Freestanding transparent terahertz half-wave plate using subwavelength cut-wire pairs YosukeNakata,1,∗YudaiTaira,2ToshihiroNakanishi,3andFumiaki Miyamaru1,2 7 1CenterforEnergyandEnvironmentalScience,ShinshuUniversity,4-17-1Wakasato,Nagano 1 380-8553,Japan 0 2DepartmentofPhysics,FacultyofScience,ShinshuUniversity,3-1-1Asahi,Matsumoto, 2 Nagano390-8621,Japan 3DepartmentofElectronicScienceandEngineering,KyotoUniversity,Kyoto615-8510,Japan n ∗[email protected] a J 9 2 Abstract: We designed a cut-wire-pair metasurface that works as a transparentterahertzhalf-waveplate,bymatchingtheelectricandmagnetic ] resonances of the structure. Due to the impedance matching nature of s c the resonances, a large transmission phase shift between the orthogonal i polarizationswasachieved,whilepermittingahightransmission.Theelec- t p tric and magnetic responses of the proposed structure were confirmed by o evaluating the electric admittance and magnetic impedance. The structure . s wasfabricatedonaflexiblefilmanditshelicity-conversionfunctioninthe c terahertzfrequencyrangewasexperimentallydemonstrated.Thethickness i s of the device is less than 1/10 of the working vacuum wavelength, and a y h high amplitude helicity conversion rate over 80% was achieved. Finally, p using simulations, we demonstrate the feasibility of the gradually rotating [ cut-wire-pairarrayinterahertzwave-frontcontrol. 1 © 2017 Optical Society of America. One print or electronic copy may be made v forpersonaluseonly.Systematicreproductionanddistribution,duplicationofany 6 materialinthispaperforafeeorforcommercialpurposes,ormodificationsofthe 4 contentofthispaperareprohibited. 3 8 OCIScodes:(160.3918)Metamaterials;(130.5440)Polarization-selectivedevices;(300.6495) 0 Spectroscopy,terahertz. . 1 0 Referencesandlinks 7 1 1. Y.-S.Lee,PrinciplesofTerahertzScienceandTechnology(Springer,2008). : 2. T.Kampfrath,K.Tanaka,andK.A.Nelson,“Resonantandnonresonantcontrolovermatterandlightbyintense v terahertztransients,”Nat.Photon.7,680–690(2013). i 3. R.Fukasawa,“Terahertzimaging:Widespreadindustrialapplicationinnon-destructiveinspectionandchemical X analysis,”IEEETrans.THzSci.Technol.5,1121–1127(2015). r 4. J.-B.MassonandG.Gallot,“Terahertzachromaticquarter-waveplate,”Opt.Lett.31,265–267(2006). a 5. M.Nagai,N.Mukai,Y.Minowa,M.Ashida,J.Takayanagi,andH.Ohtake,“AchromaticTHzwaveplatecom- posedofstackedparallelmetalplates,”Opt.Lett.39,146–149(2014). 6. H.Tao,W.J.Padilla,X.Zhang,andR.D.Averitt,“Recentprogressinelectromagneticmetamaterialdevicesfor terahertzapplications,”IEEEJ.Sel.Top.QuantumElectron.17,92–101(2011). 7. H.-T.Chen,A.J.Taylor,andN.Yu,“Areviewofmetasurfaces:physicsandapplications,”Rep.Prog.Phys.79, 076401(2016). 8. Y.HeandG.V.Eleftheriades,“Designofthininfraredquarter-waveandhalf-waveplatesusingantenna-array sheets,”Opt.Express21,24468–24474(2013). 9. P. E. Sieber and D. H. Werner, “Infrared broadband quarter-wave and half-wave plates synthesized from anisotropicBe´ziermetasurfaces,”Opt.Express22,32371–32383(2014). 10. D.Wang,Y.Gu,Y.Gong,C.-W.Qiu,andM.Hong,“Anultrathinterahertzquarter-waveplateusingplanar babinet-invertedmetasurface,”Opt.Express23,11114–11122(2015). 11. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-waveplate,”LaserPhoton.Rev.8,626–632(2014). 12. X.Ding,F.Monticone,K.Zhang,L.Zhang,D.Gao,S.N.Burokur,A.deLustrac,Q.Wu,C.-W.Qiu,and A.Alu`,“UltrathinPancharatnam-Berrymetasurfacewithmaximalcross-polarizationefficiency,”Adv.Mater. 27,1195–1200(2015). 13. X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarizationconversion,”Appl.Phys.Lett.108,183502(2016). 14. C.PfeifferandA.Grbic,“MetamaterialHuygens’surfaces:tailoringwavefrontswithreflectionlesssheets,” Phys.Rev.Lett.110,197401(2013). 15. G.Dolling,C.Enkrich,M.Wegener,J.F.Zhou,C.M.Soukoulis,andS.Linden,“Cut-wirepairsandplatepairs asmagneticatomsforopticalmetamaterials,”Opt.Lett.30,3198–3200(2005). 16. V.M.Shalaev,W.Cai,U.K.Chettiar,H.-K.Yuan,A.K.Sarychev,V.P.Drachev,andA.V.Kildishev,“Negative indexofrefractioninopticalmetamaterials,”Opt.Lett.30,3356–3358(2005). 17. V.D.Lam,J.B.Kim,S.J.Lee,Y.P.Lee,andJ.Y.Rhee,“Dependenceofthemagnetic-resonancefrequencyon thecut-wirewidthofcut-wirepairmedium,”Opt.Express15,16651–16656(2007). 18. V.D.Lam,J.B.Kim,N.T.Tung,S.J.Lee,Y.P.Lee,andJ.Y.Rhee,“Dependenceofthedistancebetween cut-wire-pairlayersonresonancefrequencies,”Opt.Express16,5934–5941(2008). 19. T.T.Nguyen,P.Lievens,Y.P.Lee,andD.L.Vu,“Computationalstudiesofacut-wirepairandcombined metamaterials,”Adv.Nat.Sci.:Nanosci.Nanotechnol.2,033001(2011). 20. D.T.Viet,N.V.Hieu,V.D.Lam,andN.T.Tung,“Isotropicmetamaterialabsorberusingcut-wire-pairstruc- tures,”Appl.Phys.Express8,032001(2015). 21. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopyonpolymers:Areviewofmorphologicalstudies,”J.Mol.Struct.1006,41–51(2011). 22. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93, 051105 (2008). 23. R.Singh,Z.Tian,J.Han,C.Rockstuhl,J.Gu,andW.Zhang,“Cryogenictemperaturesasapathtowardhigh-Q terahertzmetamaterials,”Appl.Phys.Lett.96,071114(2010). 24. O.Morikawa,A.Quema,S.Nashima,H.Sumikura,T.Nagashima,andM.Hangyo,“Faradayellipticityand Faradayrotationofadoped-siliconwaferstudiedbyterahertztime-domainspectroscopy,”J.Appl.Phys.100, 033105(2006). 25. G.Zheng,H.Mu¨hlenbernd,M.Kenney,G.Li,T.Zentgraf,andS.Zhang,“Metasurfacehologramsreaching80% efficiency,”Nat.Nanotech.10,308–312(2015). 26. F.Ding,Z.Wang,S.He,V.M.Shalaev,andA.V.Kildishev,“Broadbandhigh-efficiencyhalf-waveplate:a supercell-basedplasmonicmetasurfaceapproach,”ACSNano9,4111–4119(2015). 27. H.-X.Xu,G.-M.Wang,T.Cai,J.Xiao,andY.-Q.Zhuang,“TunablePancharatnam–Berrymetasurfacefordy- namicalandhigh-efficiencyanomalousreflection,”Opt.Express24,27836–27848(2016). 28. Y.HeandG.V.Eleftheriades,“Rotatedinfraredantennatransmitarrayforthemanipulationofcircularlypolar- izedwavefronts,”EPJAppl.Metamat.1,8(2014). 29. W.Zhao,H.Jiang,B.Liu,J.Song,andY.Jiang,“High-efficiencybeammanipulationcombininggeometricphase withanisotropicHuygenssurface,”Appl.Phys.Lett.108,181102(2016). 1. Introduction Duringthelasttwodecades,therehasbeenrapidprogressinterahertzspectroscopytechniques andtheyhavebeenappliedinseveralfields[1].Especially,therecentprogressinthedevelop- ment of high-power terahertz sources has accelerated the growth of terahertz nonlinear spec- troscopy [2], and imaging technologies [3]. In spite of these remarkable developments, com- merciallyavailabledevicestocontrolterahertzwavesarestilllacking.Theprogressofterahertz polarization-dependentspectroscopyandimagingapplicationsdemandterahertzwaveplates. Although achromatic terahertz waveplates have been developed [4, 5], the size of conven- tional terahertz devices is typically much larger than the terahertz wavelength. To make the terahertz system compact, it is highly desirable to develop ultrathin waveplates. Artificially designedmaterials,ormetamaterials,havebeendevelopedtoovercomethisproblem[6].Two- dimensionalmetamaterialscalledmetasurfaces,whichhavethicknessesmuchlessthanwork- ing wavelengths, and their ability to control electromagnetic waves have been studied inten- Fig.1.(a)Symmetricelectricmode.(b)Anti-symmetricmagneticmodeofthecurrenton ametalliccut-wirepair. sively [7]. So far, the application of terahertz metasurfaces in quarter wave plates have been investigated[8,9,10,11]. A half-wave plate has the ability to convert helicity, e.g. from right-circular polarization (RCP)toleft-circularpolarization(LCP).However,inprinciple,ahighlytransparenthalf-wave platewithanamplitudeconversionefficiencyfromLCPtoRCP(RCPtoLCP)over50%can- notberealizedusingasingle-layermetasurface[12].Therefore,multilayerdesignsarerequired toachievethisfunctionality.Recently,Wuetal.discoveredthattwolayersofdouble-cutsplit ring resonators work as a highly transparent subwavelength half-wave plate, and experimen- tallyrealizedtheminthemicrowavefrequencyrange[13];however,theguidingprincipleused to design the structure is unclear. Another approach to realize a highly transparent half-wave plateistheuseofamultilayerdipolearray.Y.Heetal.proposedtheuseofthree-layerdipole structurestoimplementaninfraredhalf-waveplate,basedonthemicrowavephase-shifterthe- ory[8].However,inordertomakethefabricationprocesssimpler.itisdesirablehavealower numberofdipolelayers. Inthispaper,weshowthatametasurfacecomposedofcut-wirepairs,interactingwitheach other, can act as a highly transparent half-wave plate in the terahertz frequency range. The- oretically, the metasurface is designed by matching the electric and magnetic resonances of cut-wire pairs. In spite of the extremely simple design of the metasurface, it exhibited broad- band impedance matching during simulations. We fabricated the structure on a flexible film, anddemonstrateditshelicity-conversioncapabilityintheterahertzfrequencyrange.Theappli- cationofametasurfaceinterahertzwave-frontcontrolisalsodiscussed. 2. Design From a macroscopic point of view, an isotropic metasurface can be characterized by a zero- thickness surface with an effective electric sheet admittance Y and and magnetic sheet e impedance Z . We assume that this surface is located at z=0. The macroscopic parameters m relate the effective surface electric current density K and the magnetic current density K , m flowing on z=0, with the coarse grained electric field E and magnetic field H at z=0, as K=Y E ,K =Z H ,where“av”indicatesthatthefieldsontheupside(z=+0)anddown- e av m m av side(z=−0)areaveraged.Foranormallyincidentplanewave,thecomplexelectricamplitude transmission and reflection coefficients are denoted ast and r, respectively. The effective pa- rametersY andZ canbegivenbythefollowingequations[14]: e m Y 1−r−t Z 1+r−t e =2 , m =2 . (1) Y 1+r+t Z 1−r+t 0 0 (cid:112) Here,Z = µ /ε (=1/Y )istheimpedanceoffreespace.Definingy =Y /(2Y )andz = 0 0 0 0 e e 0 m Z /(2Z ), we also have t =(1−y z )/[(1+y )(1+z )],r =(z −y )/[(1+y )(1+z )]. m 0 e m e m m e e m From these equations, the impedance matching z =y leads to zero reflection, although the m e phase oft could be an arbitrary value. For example,t =(1−jb)/(1+jb) induces the phase ϕ =−2arctanbfory =z = jb,b∈R. e m Now,weconsiderametasurfacecomposedofmetalliccut-wirepairs[15,16,17,18,19,20]. Apairofparallelcutwirescoupledwitheachotherhastworesonantmodes:anelectricmode formedbythesymmetricallyflowingcurrents[Fig.1(a)],andamagneticmodeformedbythe antisymmetrically flowing currents [Fig. 1(b)]. The electric mode can be induced by an os- cillatingelectric fieldparallel tothe current.On theotherhand, atime-varying magneticflux penetrating the cut-wire pair will excite the magnetic mode composed of rotating currents in thecut-wirepair.Thus,theelectricandmagneticmodesaffectY andZ ,respectively.Match- e m ingtheresonantfrequenciesofthesemodescouldinducealargephaseshift,whilepermitting a high transmission. Based on this idea, the structure was designed using the finite element methodwithCOMSOL.Forthis,weconsideredthecut-wirepairstobearrangedintheformof hexagonallattices.Notethefollowingdesignstrategyisapplicabletootherlatticesymmetries includingsquarelattices.TheunitcellofthestructureisdepictedinFigs.2(a)and2(b).Peri- odicboundaryconditionswereutilizedforthesimulation.Themetalliccutwireswereplaced on both sides of the substrate, which was made of cyclic olefin copolymers (COC) having a thicknesst=40µmandrefractiveindexn˜=1.53−0.001j[21]. First,theeigenfrequenciesoftheelectricandmagneticmodeswerematched.Theeigenfre- quenciesofthemetasurfacewerecalculatedbyusingtheeigensolverfunctioninCOMSOL.In order to reduce the simulation complexity for the eigenfrequency analysis, metallic cut wires wereassumedtobezero-thickperfectelectricconductor(PEC),andonlythez≥0domainwas considered.Forthemagneticmodes,thePECboundaryconditionwasimposedonz=0.For theelectricmodes,theperfectlymagneticconductorboundaryconditionwasimposedonz=0. The perfectly matched layers were attached to the upper boundary of the air domain, so that therewouldbeaproperabsorptionoftheleakageradiationinthezdirection.Afteroptimiza- tion,weobtaineda=585µm,l=215µm,andw=169µm.Thecalculatedeigenfrequencies ofthestructureareshowninTable1.Itcanbeseenthatboththeelectricandmagneticmodes ofthecurrent(cid:107)yexistaround0.51THz.Thesemodesmayleadtotheimpedancematchingof thestructure,andcouldinducealargephaseshiftwhilemaintainingahightransmission. Next, we calculated the transmission property of the metasurface. A plane wave normally enters the metasurface from z>0 to z<0. The metallic cut wire was treated as a transition boundary equivalent to a 0.5µm-thick silver film having a conductivity of 46S/µm [22]. For comparison,wealsocalculatedtransmissionspectraofalosslessmetasurfacecomposedofPEC cut-wire pairs with a lossless substrate having a refractive index n˜=1.53. For a β-polarized incident electric field E e exp(jkz) in z>0, the α-polarized component of the transmitting 0 β electric field in z<0 is represented by E e t exp(jkz), using amplitude transmission co- 0 α αβ efficients t , a constant E , the wavevector k (>0) in air, and two orthonormal vectors e αβ 0 α (α=1,2)perpendiculartothez-axis.Thecalculatedamplitudeandphasetransmissionspectra of the optimized metasurface for x and y polarized plane waves are shown in Figs. 2(c) and 2(d). At 0.506THz, the functions of the half-wave plate can be observed to be |t |≈0.99, xx |t |≈0.85,andarg(t )−arg(t )≈3.2forthesilvermetasurface.Surprisingly,ahightrans- yy xx yy mission amplitude |t | over 0.8 is observed in the broadband region. This indicates that the yy oscillator strength and line width of the electric and magnetic resonant modes are approxi- Table1. Calculatedeigenfrequenciesforcut-wirepairson40µm-thickcycloolefincopoly- mersubstratewitha=585µm,l=215µm,andw=169µm. electricmode magneticmode current(cid:107)x 0.473THz 0.422THz current(cid:107)y 0.514THz 0.510THz matelybalanced.Incomparisonwiththelosslessmetasurface,|t |ofthesilvermetasurfaceat yy theworkingfrequencyisdegradedbythemetalandsubstrateloss.Cryogenictemperaturescan beapathtowardsdecreasingunavoidablelosseffect[23]. Theelectricandmagneticresponsesofthesilvermetasurfaceforeachpolarization,|Y |and e |Z |,calculatedbyEq.(1),areshowninFigs.2(e)and2(f).Foranx-polarizedwave,itcanbe m seenthatthefrequenciesof|Y |and|Z |peaksaredifferent,andtheyarefar-off-resonantfrom e m theoperationfrequency0.506THz.Alternatively,foray-polarizedwave,thepeakfrequencies arealmostsame,andimpedancematchingisapproximatelyachievedinthebroadbandregion. Therefore, we can realize not only a half-wave plate, but also an efficient phase plate with differentphaseshiftsfordifferentworkingfrequencies. Fig.2. (a)Topviewofthesimulationmodel.(b)Sideviewofthemodel.(c)Amplitude and(d)phasetransmissionspectraofsilvercut-wirepairsonaCOCsubstratewitha= 585µm,l=215µm,w=169µm,andt=40µmforxandypolarizednormallyincident waves(losslesscasesarealsoshownforcomparison).Macroscopicelectricadmittanceand magneticimpedanceofthesilvercut-wirepairsonaCOCsubstratefor(e)x-polarizedand (f)y-polarizedwaves. 3. Experimentaldemonstrationofterahertzhelicityconversion The experimental demonstration of the function of the terahertz half-wave plate is described below.Thesamplewaspreparedasfollows:(i)A10nmtitaniumadhesionlayerfollowedby a1.4µmaluminumlayerweredepositedonbothsidesofthe40µmCOC(ZEONOR®,Zeon Corp.) by electron-beam evaporation at room temperature, (ii) cut-wire-pair structures were formed on both sides of the substrate using a femtosecond laser ablation process. Note that wedepositeda1.4µm-thickaluminumlayertoavoidtheskineffectasmuchaspossible,but athicknesssufficientlylargerthantheskindepth≈150nmofaluminumat0.5THzcouldbe enough.ThefabricatedsampleisshowninFigs.3(a)–(c).InFigs.3(b)and3(c),itcanbeseen that the boundary of the unit cell is whiter than the other parts. This is because the boundary is shaved twice by the scanning laser beam. From the microphotographs of the sample, the measureddimensionsarel=217µmandw=174µm,withadeviationof1µm. Next,usingaterahertztime-domainspectroscopysystem,wedemonstratedthehelicitycon- versionfunctionofthehalf-waveplate,whichisapplicabletothewave-frontcontroldiscussed inSec.4.Here,theco-andcross-polarizedamplitudetransmissionst andt (t andt )for xx yx yy xy normallyincidentx(y)polarizedwavesweremeasuredusingastandardcrossellipsometrypo- larizationprobingsetup[24],andthevaluesof|t |and|t |werecalculated,whereRandL LR RR represent RCP and LCP (rotating direction as seen from the detector side), respectively. The plotsoftheexperimentallyobtained|t |and|t |areshowninFig.3(d).Inthisfigure,itcan LR RR be observed that |t | peaks over 0.8, which is beyond the limit of conversion efficiency of LR asingle-layermetasurface[12],at0.50THz.Forcomparison,thenumericallycalculated|t | LR and|t |forcut-wirepairsof1.4µm-thickaluminumhavingaconductivity22S/µm[22]with RR a=585µm, l =217µm, w=174µm, andt =40µm, are shown in Fig. 3(e), where the thin titaniumlayerwasignoredinthesimulation.Simulatedmaximumconversionefficiencyis0.9, whichisdegradedbythelosseffectdiscussedinSec.2.Theexperimentallyobtainedspectra Fig.3. (a)Photographofasample.Microphotographsfrom(b)topand(c)bottomviews ofthesample.(d)Measuredtransmissionspectraforthesamplefromthebottomsideto thetopside.(e)Simulatedtransmissionspectrafor1.4µm-thickaluminumcut-wirepairs ona40µm-thickCOCsubstratewitha=585µm,l=217µm,andw=174µm. Fig.4. (a)Thetopviewofsimulationmodel.(b)Eyat0.504THzonX–zplane. agreeswellwiththesimulatedspectra,althoughtheexperimentallyobtainedpeakvalueofhe- licityconversionisnotashighasthesimulatedone.Thiscanbeattributedtofabricationerror including over shaving of the substrate. There is still room for device optimization; however, thebasicfunctionofthehalf-waveplatewasdemonstrated,andthethicknessofthedeviceis lessthan1/10oftheworkingvacuumwavelength. 4. Towardsterahertzwave-frontcontrol In this section, we discuss the applicability of the cut-wire pairs to wave-front control. If the structuresthatconverthelicityarerotated,theconvertedwaveattainsthePancharatnam–Berry phase. Therefore, it is possible to control the wave front by gradually rotating the structures [12].ThePancharatnam–Berryphaseinducedforreflectedcircular-polarizedwavesisutilized for the highly efficient control of wave fronts in the near-infrared region [25, 26]. Recently, activecontroloftheworkingfrequencyforreflectedcircular-polarizedmicrowaveswastheo- reticallyproposed[27].Thewave-frontcontrolfortransmittingcircular-polarizedwavesusing three-layermetallic dipoles[28] anddielectric resonators[29] hasbeen studiedwith thehelp ofsimulations. Toinvestigatethepossibilityofcontrollingaterahertzwavefront,wealsoperformedasim- ulation using COMSOL for implementing a beam deflector. For this, 12 unit cells [shown in Fig. 1(a)] were connected and each meta-atom was rotated, as shown in Fig. 4(a). The basic setupforthesimulationwasthesameasthatinSec.2.Theangleofrotationofeachunitcell wasincreasedbyϕ fromthepreviousadjacentunitcell,withϕ =15◦.Theperiodicboundary conditionswereappliedtothesideofthesimulationdomain.Fromz>0,anRCPwaveenters the0.5µm-thicksilvercut-wirearrayonthesurfaces(z=−t/2, t/2)ofaCOCsubstratewith arefractiveindexn˜=1.53−0.001j.Perfectlymatchedlayerswereattachedtotheupperand bottom boundaries of the air domain for the proper absorption of diffracted waves. The cal- culated E at 0.504THz on the X–z plane is shown in Fig. 4(b). In Fig. 4(b), we can see the y beamisdeflectedbyθ ontheX–zplane,althoughtheequiphaselinesofthetransmittedwave X are not perfectly straight lines. The observed θ ≈5◦ shows good agreement with the theo- X reticallycalculatedvalueθ(theo)≈4.9◦.Thetransmittingpowerevaluatedbytheintegrationof X the Poynting vector is 73%. In order to experimentally demonstrate this functionality in the terahertzfrequencyrange,accuratefabricationandterahertzimagingtoevaluatethesampleare required. 5. Conclusion In this study, we designed an ultrathin terahertz half-wave plate by matching the electric and magneticresonancesofcutwirescoupledwitheachother.Theelectricandmagneticresponses wereanalyzedbyevaluatingtheeffectiveelectricadmittanceandmagneticimpedance.These resultsindicatedthattheelectricandmagneticresonancesleadtoalargephaseshiftwhilemain- taininghighbroadbandtransmission.Thedesignedsamplewasfabricatedusingafemtosecond laser ablation process. Next, we experimentally demonstrated its capability for the polariza- tionconversionofacircularlypolarizedwave,withafrequencyofapproximately0.5THz.The thicknessofthedeviceislessthan1/10oftheworkingwavelength,andtheobservedampli- tude helicity conversion efficiency is over 80%, which is beyond the theoretical limit of 50% thatcanbeachievedbyasingle-layermetasurface.Furtheroptimizationofthedesignandfab- rication process could lead to higher conversion efficiency. Although the working bandwidth ofthemetasurfaceislimitedtothenarrowband,itsultrathinsizecanbeutilizedforapplica- tions involving continuous terahertz waves, which are often used in terahertz communication technology.Finally,wediscussedthepossibleapplicationofthemetasurfacetohighlyefficient wave-frontcontrol.Abeamdeflectorcanberealizedbygraduallyrotatingthemeta-atoms.The experimentalrealizationofsuchwave-frontcontrolcouldbestudiedinfutureworks. Acknowledgments The authors thank Yoshiro Urade for the useful discussions. The electron-beam evaporation wasperformedwiththehelpofKyotoUniversityNanoTechnologyHub,aspartofthe“Nan- otechnologyPlatformProject”sponsoredbyMEXTinJapan.