ebook img

Free path lengths in quasi crystals PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Free path lengths in quasi crystals

FREE PATH LENGTHS IN QUASI CRYSTALS BERNTWENNBERG ABSTRACT. TheLorentzgasisamodelforacloudofpointparticles(electrons) inadistributionofscatterersinspace. Thescatterersareoftenassumedtobe spherical with a fixed diameter d, and the point particles move with constant 2 velocitybetweenthescatterers,andarespecularlyreflectedwhenhittingascat- 1 terer. There is no interaction between point particles. An interesting question 0 concernsthedistributionoffreepathlengths, i.e. thedistanceapointparticle 2 movesbetweenthescatteringevents,andhowthisdistributionscaleswithscat- n tererdiameter,scattererdensityandthedistributionofthescatterers.Itisbynow a wellknownthatintheso-calledBoltzmann-Gradlimit,aPoissondistributionof J scattersleadstoanexponentialdistributionoffreepathlengths,whereasifthe 2 scattererdistributionisperiodic,thedistributionoffreepathbehavesasymptoti- callylikeaCauchydistribution. ] This paper considers the case when the scatters are distributed on a quasi h crystal, i.e. non periodically, but with a long range order. Simulations of a p one-dimensional model are presented, showing that the quasi crystal behaves - h verymuchlikeaperiodiccrystal,andinparticular,thedistributionoffreepath t lengthsisnotexponential. a m [ 1. INTRODUCTION 1 v The Lorentz gas is a mathematical model for the motion of (point) particles in e.g. a 0 crystal, consistingofspherical, elasticscatterersofradiusawithcentersatafixedsetof 5 pointsΓ ⊂ Rn. Apointparticlemovesinstraightlinesbetweentheobstacles,onwhich 4 ε itisspecularlyreflected. Atleasttwoverydifferentscattererdistributions, Γ havebeen 0 ε . studied thoroughly: the standard lattice L ⊂ Rn, with interstitial distance ε(n−1)/n, or a 1 randomdistribution,whereΓ isPoissondistributedwithintensityε−(n−1). Inthispaper 0 ε wearemainlyconcernedwiththesocalledBoltzmann-Gradlimitofthissystem,andthat 2 1 correspondstosettingthescatterradiusa=εandlettingε→0.Verylooselyspeaking,in : thisscalingthemeanfreepathofthepointparticlesremainoforderoneasε→0.Consider v i now a density fε(x,v,t] of point particles moving between the scatterers. Gallavotti [9] X (see also [10]) considered the random obstacle distribution, and proved that when ε → r 0, f (x,v,t) converges to a function that solves a linear Boltzmann equation. On the a ε otherhand, Golse[11]proved, basedonresultsin[3]and[12], thatintheperiodiccase, the limiting particle distribution does not satisfy a linear Boltzmann equation. Caglioti andGolse[6,7,8]andMarklofandStrömbergsson[15,16,17,18]independentlyfound sharpestimatesofthedistributionoffreepathlengthsandthattheBoltzmann-Gradlimit correspondstoaBoltzmannlikeequationinanextendedphasesspacethatdoesdescribe the evolution of a particle density in the limit of small ε; whereas the results in [6, 7, 8] are restrictedto twospace dimensionsand relyon an independenceassumption, [15,16, 17,18]providesacompleteproofvalidforanyspacedimension. Relatedresultsvalidfor inthetwo-dimensionalcase,canbefoundin[2,1],andin[4]. Situationswherescatterers arerandomlyplaceonaperiodiclatticehavebeenconsideredin [5]and [20]. Here we are interested in the case where the obstacles are distributed as the atoms in a quasi crystal. By definition a crystal is ”a solid with an essentially discrete diffraction 1 2 BERNTWENNBERG pattern” [21]. It has been known for a long time that periodic crystals in three dimen- sionsmustbelongtooneoffourteensymmetryclasses. Aquasicrystalisacrystalwhose diffractionpatternexhibitsaforbiddensymmetry. Thefirstreportsonexperimentalresults indicating that such solids exist were treated with suspicion by the scientific community, butin2011theirdiscoverywasawardedtheNobelPrizeinChemistry[13].Therearealso manymathematicalabstractconstructionsthatgivethesameresults,startinge.g. fromthe Penrosetiling(seee.g.[21]). ItisthenanaturalquestiontoaskwhethertheBoltzmann- Grad limit of a Lorentz gas in a quasi crystal behaves more like the random or periodic case. Inthispaperwepresentsimulationresultsonaone-dimensionalmodel,whichgive strongsupportforthelatter:thefreepathlengthdistributiondecayspolynomially,justasin theperiodiccase,whereasintherandomcase,thepathlengthdistributionisexponentially decaying. ThenextsectiongivesprecisedefinitionsoftheLorentzmodel,andofitsBoltzmann- Grad limit, and some results concerning the periodic and random cases are discussed. Thereafter, in Section 3, a construction of quasi crystals is given; that section is mainly basedon[21]. Section4presentsthesimulationmethodandtheresults,andthepaperendswithcon- clusionsandsomeprospectsforfutureresearchinSection5. 2. FREEPATHLENGTHDISTRIBUTIONSINTHELORENTZMODEL The discussion in this section is restricted to the Lorentz gas in two dimensions, and hence we consider a point distribution Γ ⊂ R2, or more precisely, a family of point ε distributionsparametrizedbyε.Ateachpointp∈Γ weputacircularobstaclewithradius ε ε andcenterat p, andthenwe study themotionofapoint particlemovingwithconstant speed, |v| = 1, alongstraightlinesbetweentheobstacles, andspecularlyreflectedwhen hittinganobstacle. HencethephasespaceforonepointparticleisΩ ×S1,where Γε Ω =R2\ (cid:91) B¯ (ε) Γε p p∈Γ andB¯ (ε)istheclosedballofradiusεcenteredatp ∈ R2. Foranyinitialpoint(x ,v ) p 0 0 wedefine Tt (x ,v )=(x(t),v(t)), Γε 0 0 the position of the point particle at time t, taking into account all reflections on the set of obstacles. As long as the obstacles do not overlap, this is well defined for all t ≥ 0. Moreover,thethefreepathlengthisdefinedas (cid:110) (cid:12) (cid:111) τ (x ,v )=inf t>0(cid:12)x +tv ∈/ Ω . ε 0 0 (cid:12) 0 0 Γε Wealsodefinethepathlengthdistribution m({(x,v)∈(Ω ∩B (R))×S1|τ (x,v)∈]a,b[)} (1) φ (]a,b[)= lim Γε 0 ε . ε R→∞ m(ΩΓε ∩B0(R)) Herem(·)istheLebesguemeasurerestrictedtoΩ ×S1.Incaseswhere,atleastformally, Γε onecanprovethatforallintervals[a,b],φ (]a,b[)remainsboundedfromaboveandbelow ε whenε→0onespeaksofaBoltzmann-Gradlimit. The two typical examples of point distributions Γ considered in connection with the ε LorentzgasaretheperiodicdistributionsΓ =a(ε)Z2,andaPoissoneanrandomdistribu- ε tionwithintensitya(ε). For a periodic distribution it is more natural to define the free path length distribution byrestrictingtoalatticeunitcellratherthantoaballofradiusRasin(1). Ofcourse,in thelimitR→∞theresultisthesame. InthiscasetheBoltzmann-Gradlimitcorresponds tochoosinga(ε)=ε1/2. Thepathlengthdistributionφ intheBoltzmann-Gradlimithas ε been studied in [3, 12], and then, with very sharp bounds in [6, 7, 8] using the theory of FREEPATHLENGTHSINQUASICRYSTALS 3 θ q q q q 0 1 2 3 FIGURE 1. ComputingthefreepathlengthinaperiodicLorentzgasis equivalenttotoadiscretemap. continued fractions, and [15, 16, 17, 18] using methods based on Ratner’s theorem. The resultisthatφ ([T,∞[)→CT−1asymptoticallyforlargeT whenε→0. ε ThedistributionΓ isaPoissondistributionwithintensitya(ε)ifandonlyifforanyset ε A⊂R2, (m(A)a(ε))k Prob(noofpointsinA=k)= e−m(A)a(ε), k! and in also, for A ⊂ R2 and B ⊂ R2 with A(cid:83)B = ∅, the number of points in Γ (cid:83)A ε (cid:83) andΓ Bareindependentrandomvariables. HeretheBoltzmann-Gradlimitisachieved ε bysettinga(ε) = ε−1,andlettingεgotozero. Thisdistributiondiffersfromtheperiodic one in several fundamental aspects. First, obstacles may overlap, and hence the trajecto- ries(x(t),v(t))cannotalwaysbecontinueduniquely. However,themeasureofsuch,bad trajectories goes to zero when ε → 0. Secondly, before taking the limit R → ∞ in the definition of the path length distribution, the expression in the right hand side of equa- tion (1) is a random variable, but one that converges to a deterministic value both when R → ∞, and when ε → 0. The path length distribution φ ([T,∞[) converges to a dis- ε tributionφ([T,∞[) ∼ exp(−cT). TheLorentzgaswithPoissondistributedobstacleshas beenstudiedindetailbyGallavotti[9],whoprovedthatiff (x,v)∈L1(cid:0)Ω ×S1(cid:1)are densities of initial points for point particles, and f (x,v,t)ε,=0 E(cid:2)f (T−t(xΓ,εv))(cid:3), then, ε ε,0 Γε assumingthatf → f ∈ L1(R2 ×S1), itfollowsthatf (x,v,t) → f(x,v,t), which ε,0 0 ε solvesalinearBoltzmannequation. Adifferentclassofrandomdistributionsofscattererscanbeconstructedstartingfrom aperiodicdistribution, byremovingobstaclesrandomly, independently, withsomeprob- ability p(ε). Although for a given, positive ε, the behavior is rather different from the Poissonean case, this difference disappears in the limit as ε → 0, and in particular, it is possibletorigorouslyderivealinearBoltzmannequationstartingfromsuchdistributions (see[5,20]). Thefollowingsectiongivesexamplesofmathematicalconstructionsofquasicrystals, and the corresponding Lorentz gas. However, computing long point particle trajectories inaquasicrystalLorentzgasisverytimeconsuming,andthereforethesimulationresults presented in this paper are performed on a one-dimensional discrete model. In the two- dimensional periodic case, the path length distribution can be computed almost exactly by analyzing the discrete map given by the consecutive intersections of a trajectory with lines parallel to the lattice containing lattice points, as in Figure 1. We assume here that a = 1. For an initial point (x ,v) with x = (q ,q˜ ) sitting on a horizontal line as in 0 0 0 0 the figure, and with v ∈ S2 having an angle θ to the vertical line, the distance between twoconsecutivepointsistan(θ). Tofindthefreepathlengthofatrajectoryinaperiodic Lorentzgasisthen(almost)equivalenttocomputing √ (2) k =min(cid:8)j (cid:12)(cid:12)dist(qj,Z)≤ ε/2(cid:9). √ Infact,wewillhaveτ (x ,v)= ε(k±1)/cosθ. ε 0 4 BERNTWENNBERG 3. QUASICRYSTALS The material in this section is mostly taken from M. Senechal’s book ”Quasi Crystals andGeometry”[21],whichgivesagoodintroductiontothesubject. ThereareseveralwaysofconstructionpointsetsinRn thatsatisfytherequirementfor being a quasi crystal: ”an essentially discrete diffraction pattern exhibiting a forbidden symmetry”. Oneoftheseisthesocalledprojectionmethod: • LetLp beapointlatticeinRk (usuallythestandardlattice),andletK betheunit cellinthelatticethatcontainstheorigin. • LetE beann-dimensionalsubspaceofRk,suchthatE∩Lp ={0},andletE⊥be theorthogonalcomplementofE. • LetΠandΠ⊥betheorthogonalprojectionsonE andE⊥respectively. • LetX = Lp ∩(cid:0)Π⊥(K)⊕E(cid:1), i.e. thesetoflatticepointscontainedinthestrip (orcylinder)obtainedbytranslatingtheunitcellK alongE. ThequasicrystalisΛ = Π(X),theorthogonalprojectionsofX onE. Thissetisdis- (cid:8) (cid:12) (cid:9) crete(inf |p1−p2|(cid:12)p1,p2 ∈Λ =r0 >0),nonperiodicandrelativelydense(meaning thatthereisR >0suchthateverysphereinE ofradiusgreaterthanR containsatleast 0 0 onepointofΛ)(seeFigure2). ThatΛisdiscreteandrelativelydenseimpliesinparticular thatitispossibletodefineascalingthatcorrespondstotheBoltzmann-Gradlimit. Thetheoryofquasicrystalsstartedwiththe(experimental)discoveryofamaterialex- hibitingafive-foldsymmetry. Mathematicallythiscanbeconstructedusingtheprojection method,startingfromtheregularlatticeinR5. Aunitcellinthislatticeisthehypercube Q with32vertices 5 5 1(cid:88) α e , ,α ∈{−1,1} 2 j j j j=1 wheree = (1,0,0,0,0),....,e = (0,0,0,0,1). Afivefoldsymmetryisgivenbycyclic 1 5 permutationoftheunitvectorse ,atransformationthatcanberepresentedbytherotation j matrix   0 0 0 0 1  1 0 0 0 0    A= 0 1 0 0 0     0 0 1 0 0  0 0 0 1 0 whichbyanorthogonalchangeofvariablesbecomes  cos(2π) −sin(2π) 0 0 0  5 5  sin(2π) cos(2π) 0 0 0   05 05 cos(4π) −sin(4π) 0   0 0 sin(45π) cos(4π5) 0  5 5 0 0 0 0 1 Inthesenewcoordinates,Ewillbethesubspacespannedby(1,0,0,0,0)and(0,1,0,0,0). Thequasicrystalwillthenbethetheset Π(cid:0)Lp∪(cid:0)Π⊥(Q )⊕E(cid:1)(cid:1)⊂E. 5 A one-dimensional quasi crystal can be defined in the similarly as a projection on a onedimensionalsubspaceofR2. Particularexamples,whichareconvenientfornumerical computations,arethepointsequencesknownasFibonaccisequences. Theyaredefinedby taking E =(cid:8)x∈R2|x·ω =0(cid:9) , where √ 1+ 5 ω =(−1,τ) with τ = . 2 FREEPATHLENGTHSINQUASICRYSTALS 5 E⊥ E K FIGURE 2. Atwodimensionalrepresentationoftheprojectionmethod forconstructingquasicrystals √ Letν =|ω|= 1+τ2.Thereisanexplicitformulaforcomputingthesequenceofpoints thatconstitutetheone-dimensionalquasicrystalF obtainedbythisconstruction: (cid:91) m 1 (cid:13)m(cid:13) (3) F = {x } with x = + (cid:13) (cid:13) , m m ν τν (cid:13)τ (cid:13) m∈Z where(cid:107)·(cid:107)denotesthedistancetothenearestinteger. Thissequencehasmanyinteresting properties,andinparticularitsatisfiesthecriteriathatdefinesaquasicrystal. Aparticular- ityisthattheintervalbetweentwoconsecutivepointsareofexactlytwokinds,shortand long: 1 1 1 x −x = or + . m m−1 ν ν ντ Aswehaveseenabove,thereisaverydirectconnectionbetweentheperiodicLorentz gas in two dimensions and a discrete model, at least when it comes to computing the freepath-lengthdistribution,illustratedinFigure1andEquation(2). Herewedefinethe rescaledfreepathlength (cid:8) (cid:12) (cid:9) (4) τε(q0,v)=εmin j (cid:12)dist(q0+jv,F)≤ε/2 . √ (NotethatcomparedtoEquation(2)thescalingfactor εisreplacedbyε,theonlyreason beingtomakenotationmoreclean). In the following section we simulate trajectories in order to estimate the path length distributionandcomparewithsimulationresultswhenF isreplacedbyα−1Z,andwitha Poissonstreamofpointsx withintensityα. Thefactorαischosensothatallthreepoint j distributionshavethesamedensity,asymptotically: #([−R,R](cid:84)F) τ2 α= lim = . R→∞ 2R ν Thisisnotequivalenttothefreepathlengthdistributioninatwo-dimensionalLorentzgas asitisintheperiodiccase,however. 4. SIMULATIONMETHODANDRESULTS Herewestudythedistributionoffreepathlengthsofapointparticlejumpingonthereal line, i.e. the number of jumps needed before the particle falls into an interval of width ε withcenterateitherthequasicrystalF,asdefinedpreviously,theperiodiclattice ν Z,or τ2 onaPoissondistributedsetofpoints,Γ withintensityτ2/ν. TheintensityofthePoisson ε 6 BERNTWENNBERG distributionandthescalingoftheperiodiclatticearechoseninorderthatallthreeobstacle distributionshavethesamedensity. Therandomstartingpointsq arechosenrandomly,uniformlyintheinterval 0 10000ν/τ2. Obviously,forcomputingthepathlengthdistributionintherandomobstacle distributionthisisnotnecessary,q =0wouldgiveexactlythesameresult. Moreover,in 0 thiscasethedistributioncanbecomputedanalyticallyinthelimitofsmallε. Thatcaseis includedinthesimulationonlyforcomparison. Intheperiodicdistributionofscatterersit wouldbemorenaturaltochosearandominitialpointuniformlyintheinterval[0,ν/τ2], butbydefinitionthequasicrystalisnotperiodic,andthereforeitisnaturaltochosealarger interval. Forthesimulationspresentedhere,vischosenuniformlyin[0,ν/τ2].Toobtainaresult completely equivalent to the periodic Lorentz gas in two dimensions, one should have takenv = ν tanθ withθ uniformlychosenintheinterval[0,π/4],butsimulationswith τ2 differentjumplengthdistributionsshowgiveverysimilarresults,andthisisnotpresented here. However,wehaveonlytrieddistributionswithboundeddensities. Thepositionofthepointparticleafterj jumpsisdenotedq =q +vj,andthepoints j 0 x ∈ F intheFibonaccisequencearecomputedwiththeformula(3). Thepointsinthe m Poissondistributionarecomputedindependentlyforeachtrajectoryq . m Thesimulationprocedureisthen (1) Choseq andvrandomly 0 (cid:8) (cid:12) (cid:9) (2) ComputekF,ε =min j (cid:12)dist(q0+jv,F)≤ε/2 (3) ComputekZ,ε =min(cid:8)(cid:8)j (cid:12)(cid:12)(cid:12)dist(q0+jv,τν2Z)≤ε(cid:9)/2(cid:9) (4) ComputekΓ,ε =min j (cid:12)dist(q0+jv,Γ)≤ε/2 ,whereΓistherandomobsta- cledistribution. Notethatforagiventrajectoryq ,thefreepathtimeisarandom k variable,dependingontherealizationoftheobstacledistribution. Onlyonereal- izationoftherandomobstaclehasbeenchosen. (5) Makearecordofeachofthesepathlengths,andrepeatalargenumberN times. Forallsimulationresultspresentedbelow,N =2×107,andtheresultsresultshavebeen usedtoestimateProb[k ≥K],where∗representsthedifferentobstacledistributions.In ∗,ε connectionwiththeLorentzequation,therelevantquantityisthepathlengthdistribution expressedintimeunits,Prob[εk ≥T],whichisestimatedas ∗,ε Numberoftrajectorieswithk ≥T ε−1 (5) φ ([T,∞[)= ∗,ε ∗ε N Thefirstexample,showninFigure3,comparesthefreepathlengthdistributionswith thethreedifferentdistributionofscatterersthatweconsiderhereforε=10−5. Thegraph, plotted in logarithmic scale, show the 1/T-behavior of φ ([T,∞[) both for the quasi ∗,ε crystalF andfortheperiodicdistribution,whiletherandomdistributiongivesadifferent result(anexponentialdecay,asexpected). Figure4showsthesameasFigure3butwithε=10−4(left)andε=10−3(right).Note thatthepathlengthdistributionfortherandomobstacledistributionisexponentiallyonly inoftheexponentialdistributionforlargeT. Thiscorrespondsthefractionoftrajectories withajumplengthv <εwhicharestoppedbythefirstobstacletheyreach. Finally, Figure 5 shows the path length distribution φ ([T,∞[) for the quasi crystal F,ε with three different values of ε. The graph on the left shows distribution of the number of free steps , k , and the graph on the right shows the three curves expressed as a F,ε function of T, as in Equation 5. That these curves almost coincide is a strong indication that φ [T,∞[) converges to some distribution φ [T,∞[) as ε → ∞, just as in the F,ε F periodiccase. FREEPATHLENGTHSINQUASICRYSTALS 7 FIGURE 3. The free path length distribution based on 107 trajectories and ε = 10−5. The curves show the result for the Fibonacci distribu- tion of scatters (green), the periodic distribution (blue) and the random distribution(magenta). FIGURE4. ThefreepathlengthdistributioncomputedasinFigure3but withε=10−4(left)andε=10−3(right) 5. CONCLUSIONS Thesimulationresultsshowthatatleasttheone-dimensionaldiscretetimeLorentzgas inaquasicrystalbehavesessentiallyastheperiodicLorentzgas,andatleastthatthepath length distribution is not exponentially decaying, as in the random case. The simulation examplesallrefertothespecificcaseofaFibonaccisequencebasedquasicrystal. There areotherconstructionsofonedimensionalquasicrystals,andinparticularonecanconstruct awholefamilyofpointdistributionsconstructedasnon-peridicsequencesoftwodifferent 8 BERNTWENNBERG FIGURE 5. The free path length distribution in the quasi crystal, for ε = 10−5,10−4 and10−3. Totheleftthecurvesrepresentthenumber of steps and on the right, the curves represent the scaled time before a trajectoryhitsanobstacle. intervals(thebookbySenechal[21]presentssome,andgivemanyreferences). Inpartic- ularIwantedtoseewhetherthespecialchoiceofthegoldenratioasrationbetweenlong andshortintervalswouldgiveaqualitativelydifferentresultfromother,saytrancendent, ratios. Butthequalitativebehaviourseemstobethesame,andhencenosimulationresults arepresentedhere. However,thesimulationshavebeencarriedoutinamuchsimplifiedmodelofthegas, andthereforeitisnotobviousthatasimulationofareal(two-dimensional)Lorentzgasin aquasicrystalwouldgivethesameresult. Because the quasi crystals considered here are constructed as projections of a regular latticeinhigherdimension,itispossiblethatthemethodsofMarklofandStrömbergsson referredtoabovewouldalsogiveresultsinthiscase. Thispossibilityismentionedin[14], butasofnow,nofurtherresultshavebeenpublished. Ontheotherhand, thereareratherexplicitresultsforadiscreteSchrödingerequation inaone-dimensionalquasicrystalliketheonestudiednumericallyhere[19]. ACKNOWLEDGMENTS I would like to thank Andreas Strömbergsson for kindly providing information on his andMarklof’swork,andforpointingoutseveralrelevantreferences. Iwouldalsloliketo thankEmanueleCagliotiandFrançoisGolseformanyinterstingdiscussions.Theresearch hasbeenpartiallysupportedbytheSwedishResearchCouncil. REFERENCES [1] FlorinP.BocaandAlexandruZaharescu. Thedistributionofthefreepathlengthsin theperiodictwo-dimensionalLorentzgasinthesmall-scattererlimit. Comm.Math. Phys.,269(2):425–471,2007. ISSN0010-3616. doi: 10.1007/s00220-006-0137-7. [2] Florin P. Boca, Radu N. Gologan, and Alexandru Zaharescu. The statistics of the trajectory of a certain billiard in a flat two-torus. Comm. Math. Phys., 240(1-2): 53–73,2003. ISSN0010-3616. doi: 10.1007/s00220-003-0907-4. [3] JeanBourgain,FrançoisGolse,andBerntWennberg. Onthedistributionoffreepath lengths for the periodic Lorentz gas. Comm. Math. Phys., 190(3):491–508, 1998. ISSN0010-3616. doi: 10.1007/s002200050249. FREEPATHLENGTHSINQUASICRYSTALS 9 [4] V.A.Bykovski˘ıandA.V.Ustinov. Thestatisticsofparticletrajectoriesinthehomo- geneousSina˘ıproblemforatwo-dimensionallattice. Funktsional.Anal.iPrilozhen., 42(3):10–22,96,2008. ISSN0374-1990. doi: 10.1007/s10688-008-0026-2. [5] E.Caglioti,M.Pulvirenti,andV.Ricci.DerivationofalinearBoltzmannequationfor alatticegas. MarkovProcess.RelatedFields,6(3):265–285,2000. ISSN1024-2953. [6] Emanuele Caglioti and François Golse. On the distribution of free path lengths for the periodic Lorentz gas. III. Comm. Math. Phys., 236(2):199–221, 2003. ISSN 0010-3616. doi: 10.1007/s00220-003-0825-5. [7] Emanuele Caglioti and François Golse. The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions. C. R. Math. Acad. Sci. Paris, 346(7-8):477– 482,2008. ISSN1631-073X. doi: 10.1016/j.crma.2008.01.016. [8] Emanuele Caglioti and François Golse. On the Boltzmann-Grad limit for the two dimensionalperiodicLorentzgas. J.Stat.Phys.,141(2):264–317,2010. ISSN0022- 4715. doi: 10.1007/s10955-010-0046-1. [9] GiovanniGallavotti. RigoroustheoryoftheBoltzmannequationintheLorentzgas. NotaInterna,IstitutodiFisica,Università diRoma,(358),1972. [10] Giovanni Gallavotti. Statistical mechanics. Texts and Monographs in Physics. Springer-Verlag,Berlin,1999. ISBN3-540-64883-6. Ashorttreatise. [11] FrançoisGolse. OntheperiodicLorentzgasandtheLorentzkineticequation. Ann. Fac.Sci.ToulouseMath.(6),17(4):735–749,2008. ISSN0240-2963. [12] FrançoisGolseandBerntWennberg. Onthedistributionoffreepathlengthsforthe periodicLorentzgas.II. M2ANMath.Model.Numer.Anal.,34(6):1151–1163,2000. ISSN0764-583X. doi: 10.1051/m2an:2000121. [13] Sven Ledin. The discovery of quasi crystals. URL http://www. nobelprize.org/nobel_prizes/chemistry/laureates/2011/ advanced-chemistryprize2011.pdf. [14] Jens Marklof. Kinetic transport in crystals. In XVIth International Congress on MathematicalPhysics,pages162–179.WorldSci.Publ.,Hackensack,NJ,2010. [15] JensMarklofandAndreasStrömbergsson. Kinetictransportinthetwo-dimensional periodicLorentzgas. Nonlinearity,21(7):1413–1422,2008. ISSN0951-7715. doi: 10.1088/0951-7715/21/7/001. [16] Jens Marklof and Andreas Strömbergsson. The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. of Math. (2), 172 (3):1949–2033,2010. ISSN0003-486X. doi: 10.4007/annals.2010.172.1949. [17] Jens Marklof and Andreas Strömbergsson. The periodic Lorentz gas in the Boltzmann-Grad limit: asymptotic estimates. Geom. Funct. Anal., 21(3):560–647, 2011. ISSN1016-443X. doi: 10.1007/s00039-011-0116-9. [18] JensMarklofandAndreasStrömbergsson. TheBoltzmann-Gradlimitoftheperiodic Lorentz gas. Ann. of Math. (2), 174(1):225–298, 2011. ISSN 0003-486X. doi: 10.4007/annals.2011.174.1.7. [19] StellanOstlund,RahulPandit,DavidRand,HansJoachimSchellnhuber,andEricD. Siggia. One-dimensional Schrödinger equation with an almost periodic poten- tial. Phys. Rev. Lett., 50(23):1873–1876, 1983. ISSN 0031-9007. doi: 10.1103/ PhysRevLett.50.1873. [20] ValeriaRicciandBerntWennberg. OnthederivationofalinearBoltzmannequation fromaperiodiclatticegas. StochasticProcess.Appl.,111(2):281–315,2004. ISSN 0304-4149. doi: 10.1016/j.spa.2004.01.002. [21] MarjorieSenechal. Quasicrystalsandgeometry. CambridgeUniversityPress,Cam- bridge,1995. ISBN0-521-37259-3. DEPARTMENT OF MATHEMATICAL SCIENCES, CHALMERS UNIVERSITY OF TECHNOLOGY, SE41296 GOTHENBURG,SWEDEN 10 BERNTWENNBERG DEPARTMENTOFMATHEMATICALSCIENCES,UNIVERSITYOFGOTHENBURG,SE41296GOTHENBURG, SWEDEN E-mailaddress:[email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.