Marquette University e-Publications@Marquette Civil and Environmental Engineering Faculty Civil and Environmental Engineering, Department Research and Publications of 9-1-2016 Framework for Event-based Semidistributed Modeling that Unifies the SCS-CN Method, VIC, PDM, and TOPMODEL Mark Bartlett Duke University Anthony J. Parolari Marquette University, [email protected] Jeffrey McDonnell University of Saskatchewan Amilcare Porporato Duke University Published version.Water Resources Research, Vol. 52 (September 2016): 7036-7052.DOI. © 2016 American Geophysical Union. Used with permission. PUBLICATIONS Water Resources Research RESEARCH ARTICLE Framework for event-based semidistributed modeling that 10.1002/2016WR019084 unifies the SCS-CN method, VIC, PDM, and TOPMODEL KeyPoints: M.S.Bartlett1,A.J.Parolari1,J.J.McDonnell2,3,andA.Porporato1 (cid:2)Semidistributedmodelsareposedin event-basedformsthatconsistof 1DepartmentofCivilandEnvironmentalEngineering,DukeUniversity,Durham,NorthCarolina,USA,2GlobalInstitutefor ready-to-useanalyticalexpressions WaterSecurity,UniversityofSaskatchewan,Saskatoon,Saskatchewan,Canada,3SchoolofGeosciences,Universityof fortherainfall-runoffresponse Aberdeen,Aberdeen,UK (cid:2)Anewcanonicalformoftherainfall- runoffcurveunifiestheevent-based semidistributedmodelsandtheSCS- CNmethod Abstract Hydrologistsandengineersmaychoosefromarangeofsemidistributedrainfall-runoffmodels (cid:2)Theevent-basedrunoffcurveofeach suchasVIC,PDM,andTOPMODEL,allofwhichpredictrunofffromadistributionofwatershedproperties. semidistributedmodelisextended However,thesemodelsarenoteasilycomparedtoevent-baseddataandaremissingready-to-useanalytical withprethresholdandthreshold- excessrunoffmechanisms expressionsthatareanalogoustotheSCS-CNmethod.TheSCS-CNmethodisanevent-basedmodelthat describestherunoffresponsewitharainfall-runoffcurvethatisafunctionofthecumulativestormrainfall Correspondenceto: andantecedentwetnesscondition.Herewedevelopanevent-basedprobabilisticstorageframeworkand A.Porporato, distillsemidistributedmodelsintoanalytical,event-basedexpressionsfordescribingtherainfall-runoff [email protected] response.Theevent-basedversionscalledVICx,PDMx,andTOPMODELxalsoareextendedwithaspatial descriptionoftherunoffconceptof‘‘prethreshold’’and‘‘threshold-excess’’runoff,whichoccur,respectively, Citation: beforeandafterinfiltrationexceedsastoragecapacitythreshold.Fortotalstormrainfallandantecedent Bartlett,M.S.,A.J.Parolari, J.J.McDonnell,andA.Porporato wetnessconditions,theresultingready-to-useanalyticalexpressionsdefinethesourceareas(fractionofthe (2016),Frameworkforevent-based watershed)thatproducerunoffbyeachmechanism.Theyalsodefinetheprobabilitydensityfunction(PDF) semidistributedmodelingthatunifies representingthespatialvariabilityofrunoffdepthsthatarecumulativevaluesforthestormduration,and theSCS-CNmethod,VIC,PDM,and TOPMODEL,WaterResour.Res.,52, theaverageunitarearunoff,whichdescribestheso-calledrunoffcurve.Thesenewevent-basedsemidis- 7036–7052,doi:10.1002/ tributedmodelsandthetraditionalSCS-CNmethodareunifiedbythesamegeneralexpressionforthe 2016WR019084. runoffcurve.Sincethegeneralrunoffcurvemayincorporatedifferentmodeldistributions,itmayeasethe wayforrelatingsuchdistributionstolanduse,climate,topography,ecology,geology,andother Received17APR2016 characteristics. Accepted23AUG2016 Acceptedarticleonline29AUG2016 Publishedonline17SEP2016 1.Introduction Ideally, a mathematical framework for rainfall-runoff modeling should be applicable to watersheds every- where.Runoffatapointisclassifiedasoneofthreephysicalprocesses,i.e.,infiltrationexcessoverlandflow, saturation excess overland flow, and subsurface storm flow, all of which may be considered as a similar threshold-initiated process once different watershed conditions are taken into account [McDonnell, 2013; Dunne,1983].Therunoffprocessiscontrolledbytopographicconditions,aswellasgeologicalandecologi- calcontrols.Bymappingrunoffprocessestothespatiallyheterogeneousvaluesofecologicalandgeological properties,amodelshouldpredictrunoffaccordingtotheprevailingclimateandlocaltopographiccondi- tions. Following this notion, Freeze and Harlan [1969] outlined the ‘‘fully distributed’’ modeling approach where small-scale physics including runoff processes are explicitly mapped to watershed heterogeneities thatarespatiallyresolvedtothegridcellelementssubdividingthewatershedmodel. However, fully distributed models typically have significant data requirements for calibration [Semenova andBeven,2015;McDonnelletal.,2007].Asaresult,hydrologistsoftenusesimplerspatiallylumpedmodels suchastheevent-basedSoilConservationService(nowtheNaturalResourcesConservationService)Curve Number(SCS-CN)methodandsemidistributedrainfall-runoffmodels[e.g.,PonceandHawkins,1996;Beven, 2012].Semidistributedmodelstypicallyoperateincontinuoustime(discretizedintotimesteps),andinlieu of the variability of the grid cells of fully distributed models, they use a distribution, which is typically of waterstoragecapacity.Forthedistributionofwaterstoragecapacity,thesemidistributedVariableInfiltra- tion Capacity (VIC) model [Wood et al., 1992; Liang et al., 1994] and probability distributed model (PDM) [Moore,1985]assumeaversatileprobabilitydensityfunction(PDF).Alternatively,thesemidistributedTOP- VC2016.AmericanGeophysicalUnion. AllRightsReserved. MODEL (TOPography-based hydrologic MODEL) defines similar watershed points according to the BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7036 Water Resources Research 10.1002/2016WR019084 topographicindex[BevenandKirkby,1979].However,thistopographicindexactsasthebasisforthedistri- butionofstoragecapacityvalues[Sivapalanetal.,1997]. Previous studies have explored different water storage capacity distributions [Moore and Clarke, 1981], examinedthephysicalbasisofsemidistributedmodelassumptions[Franchinietal.,1996],comparedsemi- distributedmodelingapproaches[e.g.,HabetsandSaulnier,2001;Warrachetal.,2002],analyzedtheeffects fromspatiallyvariableprecipitation[Sivapalanetal.,1997;Liangetal.,1996],andexploitedcombinationsof different semidistributed assumptions [e.g., Noto, 2013]. In general, most semidistributed models assume the same functional form for direct runoff, as the product of the rainfall rate and the threshold-saturated area[Kavetskietal.,2003].Recentmodelingframeworks,e.g.,FrameworkforUnderstandingStructuralErrors (FUSE)[Clarketal.,2008]andSUPERFLEX[Feniciaetal.,2011],usetheseequivalentfunctionalformsinter- changeably,recognizingthatcertainmodelstructuresmaybebestsuitedforcertainwatershedcharacteris- tics. While components of semidistributed models (such as a saturated variable source area (VSA)) have beenincorporatedwithevent-basedmodelssuchastheSCS-CNmethod[e.g.,ChenandWu,2012],semidis- tributedmodelshaveyettobegivenanevent-basedrepresentationwherethecumulativestormrunoffisa functionofthecumulativestormrainfallandantecedentwetnessconditions. Hereweposeasuiteofsemidistributedmodelsinevent-basedformbyfollowingtheBartlettetal.[2016] ProStorframeworkwheretherainfall-runoffresponseatapointisupscaledtoawatershedscalebasedona probabilistic joint distribution of storage capacity thresholds and the antecedent soil moisture status. Fol- lowingtheframework,eachsemidistributedmodelcanbedistilledtoabasicsetofanalyticalexpressions fordescribingtheevent-basedrainfall-runoffresponse.Whengiventhetotalstormrainfallandantecedent watershedwetnessstatus,theseexpressionsdefine,thesourceareas(fractionofwatershed)thatproduce runoffbyaspecificmechanism,theprobabilitydensityfunction(PDF)thatdescribesthespatialdistribution ofrunoff,andthe(unitarea)averagerunoff.Theexpressionforaveragerunoff,commonlycalledarunoff curve[e.g.,Descheemaeker etal.,2006;Wineet al.,2012], accountsforthespatialvariabilityof rainfall and waterstorage.Notably,forexponentiallydistributedrainfalloverthewatershed,thesemidistributedmodels andtheSCS-CNmethodareunifiedbythesamecanonicalformoftherunoffcurve(e.g.,equation(10)). Indevelopingeachevent-basedmodel,weassumethesamepointrainfall-runoffresponsethatextendedthe SCS-CN method to the SCS-CNx method [Bartlett et al., 2016]. This response consists of a fraction of area whererunoffoccursbothbeforeandafterinfiltrationexceedsthestoragecapacitythreshold,andacomple- mentaryareawhererunoffonlyoccursepisodicallywheninfiltrationexceedsthestoragecapacitythreshold. ThisarearepresentstheoriginalrunoffresponseformulationofVIC,PDM,andTOPMODEL.Incomparison,the newevent-basedmodelforms(calledVICx,PDMx,andTOPMODELx)areextendedwiththeadditional‘‘pre- threshold’’runoffresponsethatoccursbeforeinfiltrationexceedsthestoragecapacitythreshold. 2.ExtendedEvent-BasedModels Thefundamentalunderlyingconceptofsemidistributedmodelingisthatthedistributionofwatershedhet- erogeneityisthebasisforawaterstoragecapacitydistributionrepresentedwithaprobabilitydensityfunction (PDF).ThesewaterstoragecapacityPDFsarethebasisforderivingthecorrespondingevent-basedmodels. 2.1.ProStorFrameworkforEvent-BasedRainfall-RunoffResponse Asemidistributedmodelmaybedescribedbyajointdistributionofthesoilmoisturedeficit,c,andwater storage capacity, w, which describe the potential retention S5cw [see Bartlett et al., 2016]. In an event- basedrepresentation,candSareconsideredantecedentvaluesimmediatelypriortothestartofthestorm, whilethepointvaluesofrainfall,R,andrunoff,Q,representcumulativedepthsforthestormduration[see Bartlett et al., 2016, Figure 1]. The spatial variability of these values may be described by the probabilistic storage(ProStor)frameworkofthejointPDF p ðQ;R;c;wÞ5p ðQjR;c;wÞp ðRÞp ðc;wÞ; (1) QRcw QjRcw R cw wherep ðQjR;c;wÞistherunoffPDFconditionalonR,c,andw;p ðRÞisthePDFofrainfall;andp ðc;wÞ QjRcw R cw is the joint PDF of the antecedent soil moisture deficit and storage capacity. As indicated by these PDFs, rainfall,R,isreasonablyassumedtobestatisticallyindependentofboththeantecedentsoilmoisturedeficit, c,andstoragecapacity,w[e.g.,Rodr(cid:2)ıguez-IturbeandPorporato,2004]. BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7037 Water Resources Research 10.1002/2016WR019084 Figure1.Thefractionareawiththreshold-excessrunofffordifferentwatershedaverageantecedentpotentialretentions,(cid:3)S,for(a)VICx/ PDMxand(b)TOPMODELx.SeeTable3forparametervalues. Ifrunoffatawatershedpointismodeledasadeterministicfunction,i.e., Q5QðR;c;wÞ; (2) thenthejointPDFbecomes p ðQjR;c;wÞ5dðQðR;c;wÞ2QÞp ðRÞp ðc;wÞ; (3) QjRcw R cw where the conditional distribution p ðQjR;c;wÞ is now represented by the point mass of probability QjRcw dðQðR;c;wÞ2QÞ,forwhichdð(cid:3)ÞistheDiracdeltafunction.ThePDFdescribingthespatialdistributionofrun- off is found by integrating equation (3) over the remaining variables (i.e., R, c, and w), while the lumped (unitarea)runoffresponse(i.e.,therunoffcurve)istheaverageofequation(3)[Bartlettetal.,2016].Frame- workvariablesandparametersarelistedinTable1. 2.2.TheJointPDFofAntecedentSoilMoistureandStorageCapacity ForthesemidistributedmodelsofVIC,PDM,andTOPMODEL,itispossibletoshowthatthejointPDFp ðc;wÞ cw isapproximatedwithaformthatisexplicitlydependentonthespatialaverage(cid:3)S,i.e., 8dðcwÞp ðwÞ for 0(cid:4)w<P21½Fð(cid:3)SÞ(cid:5) >>< w w p^ ðc;w;(cid:3)SÞ5 ; (4) cw >>:d(cid:2)cw2w1P21½Fð(cid:3)SÞ(cid:5)(cid:3)p ðwÞ P21½Fð(cid:3)SÞ(cid:5)(cid:4)w<w w w w max whereP21½(cid:3)(cid:5)isthequantilefunctionoftherespectivemodel(Table2),andP21½Fð(cid:3)SÞ(cid:5)representsthewater w w storagecapacity,w,attheedgeoftheprestormareaofthresholdsaturation,Fð(cid:3)SÞ.Notethattheconditional PDFp ðcjwÞ,whichisrepresentedbyp^ ðcjw;(cid:3)SÞ,consistsofthepointmassesofprobabilitydðcwÞandd cjw cjw (cid:2)cw2w1P21½Fð(cid:3)SÞ(cid:5)(cid:3) that, respectively, indicate c w w50andcw5w2P21½Fð(cid:3)SÞ(cid:5)withprobability1. w Table1.ProStorVariablesandParametersa The fraction of preexisting threshold-saturated Symbol Description area,Fð(cid:3)SÞ,isfoundfromtheself-consistentcon- R Stormeventrainfalldepthatapoint[L] dition[Bartlettetal.,2016] w Waterstoragecapacitydepthatapoint[L] xc AAnntteecceeddeennttssooiillmmooiissttuurreeadteaficpitoaintta,ðp1o2inctÞ,ð12xÞ (cid:3)S5Z Kð(cid:3)SÞZ wmax Sd(cid:2)S2w1P21½Fð(cid:3)SÞ(cid:5)(cid:3)p ðwÞdwdS; FSt AFrnatcetcioendeonftwpaotteernshtieadlrwetiethnttihornesahtoaldp-oeixncte,sSs5rcuwno[fLf] 0 Pw21½Fð(cid:3)SÞ(cid:5) w w (5) Q Stormeventrunoffdepthatapoint[L] QQpt PThrertehsrheoslhdo-eldxcreusnsorfufndoefpftdheaptthapatoainptooivnetroðv1e2rFFttÞ whereKð(cid:3)SÞ5wmax2Pw21½Fð(cid:3)SÞ(cid:5),andtheintegrand b Fractionofwatershedwithnon-zeroprethresholdrunoff is the second term of the r.h.s of equation (4) PI Prethresholdrunoffindex,PI5bð12(cid:3)cÞ transformed by a change of variables for S5cw n ShapeparameterofthestoragecapacityPDFpwðwÞ [Bendat and Piersol, 2011] and modified accord- aVariablesinthetextwithanoverlinebarindicateaspatialaverage ingtothescalingpropertyofthedeltafunction. (unitarea)depthvalue,e.g.,forthepointrainfalldepth,R,theaverage (unitarea)valueisdenotedbyR(cid:3).Allvalueshavedimensionsoflength The delta function of equation (5) is evaluated exceptc,x,b,PI,n,andFt,whicharedimensionless. using the property presented in Au and Tam BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7038 Water Resources Research 10.1002/2016WR019084 Table2.VIC/PDMandTOPMODELExpressions Expression VIC/PDM TOPMODEL Storagecapacitydist. Pareto MirroredExponentialb SIntvoerarsgeeCcDapFacityPDFa pPw2w1ðwðFÞÞ55ðwðwwmmwmmaaaxxax2x22wwÞ1wÞ=nnmaxð12FÞn pPww2ð1wðFÞÞ55Cw1mnwaxmnalnxe(cid:2)21w1mnaFxð(cid:2)wemna2x21w(cid:3)Þ(cid:3) (quantilefunction) Avg.storagecapacity w(cid:3)5w1m1axnn w(cid:3)5wmax(cid:4)C121n(cid:5) Avg.potentialretention (cid:3)S5w(cid:3)ð12FÞn11 (cid:3)S5C1wn(cid:3)21(cid:4)F2C1ln(cid:4)FCe1n11(cid:5)(cid:5)1w(cid:3) Antecedentsat.areac Fð(cid:3)SÞ512(cid:4)w(cid:3)(cid:3)S(cid:5)1=ð11nÞ Fð(cid:3)SÞ512C12C1W 2e2(cid:4)11(cid:3)SðCw(cid:3)1Cn121Þ(cid:5)! Avg.soilmoisturedeficitd (cid:3)c5ð12Fð(cid:3)SÞÞ (cid:3)c512Fð(cid:3)SÞ (cid:3)(cid:4)122F1(cid:4)1;1;111n;11ð12Fð(cid:3)S1ÞÞn21(cid:5)(cid:5) 1C1e2nln(cid:4)FðC(cid:3)S1Þen11(cid:5)(cid:4)li(cid:4)FðC(cid:3)S1Þen11(cid:5)2EiðnÞ(cid:5) C15aF1o2r1ev2anl(uAepspoefn0d<ixBw).<wmax andnistheshapeparameteroftherespectivePDF.InthecaseofTOPMODEL,n5jmaxj2sjminand bDerivedfromatruncatedexponentialPDFrepresentationofthetopographicindexdistribution(AppendixB). cWhereWð(cid:3)ÞistheLambertW-function[Olveretal.,2010,p.111]giveninMatlabbylambertw((cid:3))andinMathematicaby ProductLog((cid:3)).NotethatExcelrequiresanadd-intocalculatetheLambertfunction. dWhere2F1ð(cid:3);(cid:3);(cid:3);(cid:3)Þisthehypergeometricfunction[Olveretal.,2010,p.384]giveninMatlabby2F1ða;b;c;dÞ5hypergeom([a,b],c, d)andinMathematicaby2F1ða;b;c;dÞ5Hypergeometric2F1[a,b,c,d].lið(cid:3)ÞandEið(cid:3)Þaretherespectiveexponentialandlogintegrals [Olveretal.,2010,p.150]. [1999].ForeachassumedstoragecapacityPDFp ðwÞ,equation(5)issolvedforthefunctionalformofFð(cid:3)SÞ w (seeTable2).NotethattheFð(cid:3)SÞforVIC/PDM(Table2)waspreviouslyfoundbyKavetskietal.[2003]byinte- gratingthequantilefunctionofTable2basedonassumptionsfortheconditionalsoilmoisturedistribution, whichareexplicitlystatedinequation(4). Based on the joint PDF p^ ðc;w;(cid:3)SÞ of equation (4) and the Bartlett et al. [2016] spatial description of cw threshold-excessandprethresholdrunoffatapoint,wederiveanevent-basedmodelrepresentationthatis general to the PDFs of rainfall, p ðRÞ, and storage capacity, p ðwÞ (see Appendix A). This point runoff R w descriptionofBartlettetal.[2016]consistsofbothprethresholdandthreshold-excessrunoffoverthefrac- tion of watershed area b, while over the complementary area, 12b, the point response only consists of threshold-excess runoff. The fraction b may represent riparian and lower hillslope areas with a persistent hydrologicconnectiontothestreamthatfacilitatesaprethresholdrunoffbeforerainfallinfiltrationexceeds the storage capacity threshold. The complementary fraction of area 12b may represent upslope areas whereprethresholdrunoffiszerobecausetheconnectiontothestreamepisodicallyoccurswheninfiltra- tionfillsandthenspillsoverthestoragecapacitythreshold[Bartlettetal.,2016]. 2.3.RainfallandStorageCapacityPDFAssumptions Eachnewevent-basedmodelassumesaspecificformofthestoragecapacityPDF,p ðwÞ(seeTable2).Typ- w ically,VICandPDMbothassumeaParetodistributionforthePDFp ðwÞ,andsowerefertotheextended w event-basedversionsofVICandPDMcollectivelyasVICx/PDMx[Moore,2007;Liangetal.,1994].Differently, in the case of TOPMODEL, p ðwÞ has a physical basis in the slope and contributing area at a point that w define the topographic index, j (see Appendix B). Over a watershed, the spatial distribution of the topo- graphicindexmayberepresentedbythePDFp ðjÞ.Herewerepresentp ðjÞwithanexponentialPDF,and j j thisPDF typically providesa goodfit to theempiricaldistribution of thetopographic index,especially for larger values that are representative of lowland areas where the majority of runoff production occurs accordingtotheTOPMODELconcept(AppendixB).StartingfromthisexponentialPDF,wederivethemir- roredexponentialPDF(Table1)thatreasonablyrepresentsthedistributionofTOPMODELstoragecapacity (seeAppendixB). Foreachstormevent,weassumethespatialdistributionofrainfallfollowsanexponentialPDF,i.e., 1 p ðRÞ5 e2R=R(cid:3): (6) R R(cid:3) This PDF has been used to represent the spatial distribution of rainfall in small watershed areas of about 40km2[Yu,1998;Schaakeetal.,1996],aswellasinclimateandlarge-scalehydrologicmodels[Thomasand BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7039 Water Resources Research 10.1002/2016WR019084 Henderson-Sellers,1991;Liangetal.,1996;Tangetal.,2007;Sivapalanetal.,1997;Shuttleworth,1988;Arnell, 2014,p.279].Inthenextsections,weassumetheexponentialrainfallPDFofequation(6)andthestorage capacityPDFsofTable2andpresenttheanalyticalexpressionsoftheextendedmodelsofVICx/PDMxand TOPMODELx. 2.4.FractionofAreaWithThreshold-ExcessRunoff Foreachevent-basedmodel,thefractionofareaF representsthegreatestextentofthreshold-excessrun- t offattheendofastormevent.Itisafundamentalquantitythatformsthebasisofthesubsequentevent- basedmodelexpressions.Followingequation(A4),forVICx/PDMxthefractionofareawiththreshold-excess runoffis Fð(cid:3)S;R(cid:3)Þ5Fð(cid:3)SÞ1exp 2wmaxð12Fð(cid:3)SÞÞn!1(cid:6)2 wmax (cid:7)21n C(cid:6)1(cid:7)2C 1;2wmaxð12Fð(cid:3)SÞÞn!!; (7) t R(cid:3)ð12PÞ n R(cid:3)ð12PÞ n n R(cid:3)ð12PÞ I I I where Cð(cid:3)Þ and Cð(cid:3);(cid:3)Þ are the gamma and lower incomplete gamma functions, respectively [Olver et al., 2010](seeAppendixC).ForTOPMODELx,thefractionofareawiththreshold-excessrunoffis Fð(cid:3)S;R(cid:3)Þ5Fð(cid:3)SÞ1 C1R(cid:3)ð12PIÞn (cid:6)Fð(cid:3)SÞ1e2n(cid:7)R(cid:3)ðw1m2aPxIÞn2(cid:6)Fð(cid:3)SÞ1e2n(cid:7)!: (8) t R(cid:3)ð12PIÞn2wmax C1 C1 FortheSCS-CNxmethodthefractionofareaFð(cid:3)S;R(cid:3)ÞisgivenbyBartlettetal.[2016,equation(24)],where(cid:3)S t 5(cid:3)cw(cid:3) becausecandwarestatisticallyindependent. Forequations(7)and(8),thefirsttermisthefractionofareawiththresholdsaturationpriortothestorm, andthesecondtermisthefractionofareawherethreshold-excessrunoffdevelopsduringthestorm.Over thecomplementaryfractionofareað12Fð(cid:3)S;R(cid:3)ÞÞ,prethresholdrunoffoccursoverbð12Fð(cid:3)S;R(cid:3)ÞÞbutiszero t t overð12bÞð12Fð(cid:3)S;R(cid:3)ÞÞ.ThefractionofFð(cid:3)S;R(cid:3)Þvarieswith(cid:3)S (Figures1aand1b).Notethatanincreasein t t the prethreshold runoff area (an increase in b) decreases Fð(cid:3)S;R(cid:3)Þ and thus the extent of threshold-excess t runoffoverthewatershed.WhenP 50,equations(7)and(8)ofVICx/PDMxandTOPMODELxdescribethe I extentofthreshold-excessrunoffwhentheprethresholdrunoffiszero. 2.5.RunoffPDF Foreachstormevent,therunoffPDFrepresentsthespatialvariabilityofrunoffdepthsthatarecumulative values for the storm duration. Following equation (A5), this PDF is the weighted sum of the prethreshold and threshold-excess runoff PDFs of equations (C1–C4). For the exponential rainfall PDF and no prethres- holdrunoff(b50andP 50),therunoffPDFhasaremarkablysimpleformforallmodels,i.e., I Fð(cid:3)S;R(cid:3)Þ pQðQÞ5ð12Ftð(cid:3)S;R(cid:3)ÞÞdðQÞ1 t R(cid:3) e2R(cid:3)Q; (9) whereFð(cid:3)S;R(cid:3)Þisthatofeitherequations(7)and(8)orBartlettetal.[2016,equation(24)]fortheSCS-CNx t method.Inequation(9),runoffiszerooverthefractionofarea12Fð(cid:3)S;R(cid:3)Þasrepresentedbythepointmass t of probability ð12Fð(cid:3)S;R(cid:3)ÞÞdðQÞ, while the runoff depths are exponentially distributed over the fraction of t areaFð(cid:3)S;R(cid:3)ÞasrepresentedbyPDFofthesecondterm. t Forthegeneralcaseofb6¼0,theprethresholdrunoffcontributestotheprobabilitydensityforsmallerrun- offvalues(Figure2,dashedlineandbar),whilethethreshold-excessrunoffcontributesmoretotheproba- bilitydensityforlargerrunoff values(Figure2,grayline).Asa result,theexpressionsarenotassimpleas equation(9),butarestillexactexpressionsasshowninAppendixC.NotetheblackbarsofFigure2repre- sent the fraction of area that produces zero runoff as indicated by the atom of probability ð12Fð(cid:3)S;R(cid:3)ÞÞð12bÞdðQÞ, which is the first term of prethreshold runoff PDFs weighted by 12Fð(cid:3)S;R(cid:3)Þ (see t t equations(C1)and(C2)). 2.6.AverageRunoff(theRunoffCurve) ThekeyresultisanexpressionoftheaveragerunoffQ(cid:3) asafunctionofaveragerainfall,R(cid:3),andtheaverage antecedentpotentialretention,(cid:3)S,theso-called‘‘runoff-curve.’’WhiletheextendedSCS-CNxmethod,VICx/ PDMx,andTOPMODELxarebasedondifferentassumptions,eachmodelhasthesamebasicrunoffcurve expression,i.e., BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7040 Water Resources Research 10.1002/2016WR019084 Figure2.TherunoffPDFsfor(a)VICx/PDMxand(b)TOPMODELx,respectively,when(cid:3)S570andR(cid:3)525mm,whichconsistsofacontinuous probabilitydensity(rightaxis,solidline)andanatomofprobabilityforQ50(leftaxis,blackbar).InbothcasesthePDFisthetotalofthe (wgeraigyhltineed),pir.ee.t,hFrteðs(cid:3)Sh;oR(cid:3)lÞdpQrutðnQoÞff(APpDpFe(nddasixheCd).lSineeeaTnabdlebl3acfokrbpaar)r,aim.e.e,tðe1r2svFatðl(cid:3)uS;eR(cid:3)s,ÞaÞpnQdphðQeÞre,pwluesatshseumweeigbh5te0d:25th.reshold-excessrunoffPDF Q(cid:3)5R(cid:3)Fð(cid:3)S;R(cid:3)Þ1R(cid:3)ð12Fð(cid:3)S;R(cid:3)ÞÞP: (10) t t I TheexactformsofeachrunoffcurvedifferbasedonthefunctionFð(cid:3)S;R(cid:3)Þ.Therunoffcurveofequation(10) t is the first of its kind for describing an event-based semidistributed runoff response consisting of both threshold-excess runoff generated onthe fraction of area Fð(cid:3)S;R(cid:3)Þ and theprethreshold runoff originating t from the complementary fraction of area 12Fð(cid:3)S;R(cid:3)Þ. When P 50, the runoff curve defaults to R(cid:3)Fð(cid:3)S;R(cid:3)Þ, t I t whichdescribestherunoffresponseoftheoriginalmodels,butinanevent-basedformat.NotethatforP5 I bð12(cid:3)cÞ;(cid:3)cmaybegivenintermsof(cid:3)S(seeTable2). Followingequation(A8),theaveragerunoffofequation(10)istheweightedsumoftheaverageprethres- holdandthreshold-excessrunoffcomponentsgivenbyequations(C5–C8).Astheaveragerainfallincreases, the average runoff also increases (Figure 3), with higher amounts of runoff being produced as thewater- shed nears saturation, i.e., (cid:3)S approaches 0 (Figure 3). The behavior of the prethreshold runoff augments threshold-excessrunoffandincreasesthetotalaveragerunoff,especiallyforsmallervaluesofaveragerain- fall (Figure 3). Although the majority of the runoff is threshold-excess runoff (Figure 3), the area of threshold-excessrunofftypicallycomprisesasmallareaofthewatershed(e.g.,lessthan50%).Thisisespe- ciallytrueastheamountofprethresholdrunoffincreases(i.e.,asbapproaches1)becausetheprethreshold runoffactsasadrainagemechanismforthewatershedthatdecreasesthesoilwatercontentandthusthe occurrenceofthreshold-excessrunoff. 3.AnalysisoftheEvent-BasedModels 3.1.CaseStudyAreaandData Toanalyzethemodelbehavior,weusedatafromtheDavidsonriverwatershed,whichconsistsofapproxi- mately104km2nearBrevard,NorthCarolina,USA.Atthewatershedoutlet,streamflowisrecordedbythe Figure3.Theaveragerunoff,Q(cid:3)(solidlines)versustheaveragerainfall,R(cid:3)for(a)VICx/PDMxand(b)TOPMODELx.Theaveragerunoffisthe weightedsumoftheaveragethreshold-excessrunoff,Ftð(cid:3)S;R(cid:3)ÞQ(cid:3)t(dashedlines),andtheaverageprethresholdrunoffð12Ftð(cid:3)S;R(cid:3)ÞÞQ(cid:3)p;see AppendixC).Casesareshownfor(cid:3)S535(blacklines),and(cid:3)S5123(graylines).SeeTable3forparametervalues. BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7041 Water Resources Research 10.1002/2016WR019084 Figure4.FortheDavidsonRiver,(a)therainfall-runoffdata(graydots)andrank-orderdatarunoffcurve(reddashedline)and(b)a comparisontherank-orderdatarunoffcoefficients(graydots)tothemodels(lines)forthe(cid:3)SandPofTable3.FortheparametersofTable I 3contoursindicatetheratioofQ(cid:3)fordifferentw(cid:3) (andPI)toQ(cid:3)forconstantvaluesof(c)w(cid:3)5122mm(andPI50:061)forVICxandPDMx and(d)w(cid:3)5153mm(andPI50:088)forTOPMODELx.Notethatw(cid:3) andPIsatisfy0.125Fð(cid:3)SÞ1PIwhere0.12istheinitialrunoffcoefficientof thedataandFð(cid:3)SÞisdependentonw(cid:3) (Table2). UnitedStatesGeologicalSurvey(USGS)gauge03441000.Dailyrainfallvaluesaremeasuredbythenearest USGSraingauge(03455773)thatislocated19kmawayatLakeLogan.A3mresolutiondigitalelevation model(DEM)downloadedfromtheNationalElevationDataset(ned.usgs.gov)describesthetopographyof the watershed. From this DEM, we computed the topographic index with the TauDEM D-Infinity tools [Tarboton and Mohammed, 2013], and clipped the resulting values to the Davidson River area using the WatershedBoundaryDataset(nhd.usgs.gov,HUC12,060101050202). We examined Davidson river streamflow and rainfall data between 1 December 1998 and 11 November 2015,andonlyconsideredstormeventswhererainfallexceeded2mm.Rainfallvaluesarecumulativetotals foreachstormevent,andweassumeeachstormmayconsistofuptothreeconsecutivedailyvalues.For eachstorm,weseparatedstormflowvaluesfromtheUSGSmeasuredstreamflowusingthehydrographsep- arationprogram(HYSEP)[Sloto andCrouse,1996;Eckhardt,2008]. Runoff valuesalsoarecumulativetotals that are found by integrating the stormflow over the duration of each storm event. The period of record (6196days)contained1212rainfall-runoffeventswithanaveragerainfallofhR(cid:3)i515:5mmandaveragerun- offofhQ(cid:3)i54:1mm(Figure4a). Inaddition,werank-orderedtherainfall-runoffdatabypairingrespectivelistsoftherainfallandrunoffval- uesthathavebeensortedindescendingorder.Inthisway,therainfall-runoffdataarematchedbyfrequen- cy, andconsequently runoff typically is no longermatched with thecausativerainfall event. However,for theperiodofrecord,thisrank-orderdataapproximatelyrepresentstherainfall-runoffresponse(i.e.,therun- offcurve)foraveragewatershedconditions,i.e.,(cid:3)S (cid:6)h(cid:3)Si(Figure4a,dashedredline)[seeBartlettetal.,2016, AppendixD].WereducethenumberofparametersbysubstitutingP50:122Fð(cid:3)SÞwhere0.12istheinitial I runoff coefficient for small rainfall events between 2 and 5 mm (Table 3). The remaining parameters (i.e., BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7042 Water Resources Research 10.1002/2016WR019084 Table3.ModelParametersandRMSEComparisonfortheDavidsonRiverRank-OrderData VICx/PDMx TOPMODELx SCS-CNx Unit Description (cid:3)S 68a 71a 198a mm Averageantecedentpotentialretention P 0.06a 0.088a 0.12a Prethresholdrunoffindex I wmax 137a 182a 1 mm MaximumpointstoragecapacityandPDFscaleparameter(Table2) n 8.42a 6.3b ShapeparameterofstoragecapacityPDF(Table2) jmax 12.5c Max.topographicindex jmin 3.2d Min.topographicindex js 1.48d ParameteroftopographicindexPDF(seeequation(B4)) RMSE 0.012 0.011 0.033 Rootmeansquareerrorbetweendataandmodelrunoffcoefficients aNonlinearleastsquaresfitofequation(10)torainfall-runoffdataaftersubstitutingPI50:122Fð(cid:3)SÞwhere0.12istheinitialrunoff coefficientforrainfallbetween2and5mm. bParameterisequalton5jmax2jmin(seeAppendixB). cValueforwhich95.5%topogrjasphicindexvalues,j,arebetween0<j<jmax.Valuesbetweenjmax <j<1representstream channelareasthatoccupy0.5%ofthewatershedbasedonadrainagedensityofD56.26mi21[Carlston,1963]andanaveragestream channelwidthofCw54:5ft[Chapman,1996,p.248],i.e.,0:0055DCw. (cid:4) (cid:5) dNonlinearleastsquaresfitofthecumulativedistributionfunction(CDF)C12C1exp 2j1jsjmin totheempiricalcumulativedistribu- tionofthetopographicindex.TheCDFcorrespondstothePDFofequation(B4). w , n, and (cid:3)S) are based on a nonlinear least squares fit of each model runoff curve to the rank-order max (Table3).InthecaseofTOPMODEL,thePDFshapeparameternisderivedfromtopographicindexparame- ters that are found from a nonlinear least squares fit of an exponential cumulative distribution function (CDF)totheempiricaldistributionofthetopographicindex(AppendixBandTable3). 3.2.DataandModelBehaviorComparison Weinitially compare each model runoff curveto therank-ordereddata and discusshow therunoff curve mayrelatetodifferentbasinattributes.Second,wecomparethemodelrunoffcurvesunderdifferentrainfall andantecedentwetnessscenarios,andwerelatethemodeldifferencestothespatialvariabilityoftherun- offresponse.Themodelrunoffcurves(equation(10))andrank-ordereddataarecomparedintermsofrun- off coefficients, Q(cid:3)=R(cid:3) (Figure 4b). Each of the fitted models reproduces the rainfall-runoff event behavior withasmallrootmeansquarederror(RMSE)(Figure4andTable3).BothVICx/PDMxandTOPMODELxpro- videabetterfittothedatathantheSCS-CNxmethod.IncomparisontoVICx/PDMxandTOPMODELx,the SCS-CNx method predicts a larger runoff coefficient for smaller rainfall events, while predicting a smaller runoffcoefficientforlargerrainfallevents.ThisdifferenceresultsfromdifferentPDFsp^ ðc;w;(cid:3)SÞassumed cw forwatershedvariability. Eachmodel(Figure4b)representstherainfall-runoffresponsecurveforastormeventdefinedbytheTable 3valuesofn,w ;(cid:3)S,andP.Ineachmodel,theinitialrunoffcoefficientofthedata(i.e.,0.12)isequalto max I Fð(cid:3)SÞ1P.SinceFð(cid:3)SÞisdependentonw(cid:3) (seeTable2),manycombinationsofw(cid:3) andP resultinapproximately I I similar average runoff values (Figures 4c and 4d), which is the so-called problem of ‘‘equifinality’’ [Beven, 2006]. Consequently, the same storm event runoff Q(cid:3) could result from a shallower basin (smaller w(cid:3)) that producesmorethreshold-excessrunoffbutlessprethresholdrunoff,oritcouldresultfromadeeperbasin (largerw(cid:3))thatproduceslessthreshold-excessrunoffbutmoreprethresholdrunoff.WhileQ(cid:3) wouldbesimi- lar, the spatial description of runoff would be different. Thus fitting each model to a single storm event requiresbothrainfall-runoffdataandotherprocessinformationsuchasthemappednearstreamsaturated area. For small rainfall events over the Davidson river basin, the SCS-CNx method produces more runoff than either VICx/PDMx (Figure 5a) or TOPMODEL (Figure 5b). The greatest differences between the SCS-CNx methodandeitherVICx/PDMxorTOPMODELxoccursforrainfallbetween0<R(cid:3) <50mm,andthemagni- tudeofthedifferencesdecreaseswith(cid:3)S(Figure5).Inwetterconditions(e.g.,(cid:3)S <50Þ,therunoffpredictions of the SCS-CNx method, VICx/PDMx, and TOPMODELx become more similar, but under drier conditions (e.g.,(cid:3)S>50),theSCS-CNxmethodmaypredict4timesmorerunoffthanTOPMODELxandnearly5times morerunoffthanVICx/PDMx(Figures5aand5b). Differencesin theaveragerunoff response (Figures 5a and 5b) aremainly attributed to differences in the fraction of area with threshold-excess runoff, Fð(cid:3)S;R(cid:3)Þ. The behavior of Fð(cid:3)S;R(cid:3)Þ with rainfall is different for t t each model because of difference in the joint PDF p^ ðc;w;(cid:3)SÞ. Specifically, within this joint PDF, the cw BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7043 Water Resources Research 10.1002/2016WR019084 Figure5.ContoursindicatetheratioofSCS-CNxmethodrunoff,Q(cid:3)SCSx,to(a)VICx/PDMxrunoff,Q(cid:3)VICxPDMx,and(b)TOPMODELxrunoff, Q(cid:3)TOPMODELx.Thefractionofareawiththreshold-excessrunofffor(c)(cid:3)S530and(d)(cid:3)S590.SeeTable3forparametervaluesforwhich thefractionbisequalto0.085and0.16forVICx/PDMxandTOPMODELx,respectively,and0.24fortheSCS-CNxmethodassuming w(cid:3)5400mm. marginal storage capacity PDF, p ðwÞ is skewed toward smaller storage capacity values for the SCS-CNx w method,butfortheDavidsonrivercasestudyarea,thedistributionisskewedtowardlargervaluesforVICx/ PDMxandTOPMODELx(Figures5cand5d).Underwetterconditions(e.g.,(cid:3)S530Þ,themodelstendtohave similar values of Fð(cid:3)S;R(cid:3)Þ, while under drier conditions (e.g., (cid:3)S590Þ, the differences in Fð(cid:3)S;R(cid:3)Þ tend to be t t greater(Figures5cand5d). 4.Discussion 4.1.UnifiedandExtendedSemidistributedModels Themaincontributionofthisworkisthedevelopmentofageneralexpressionfortheaveragerunoff(i.e., therainfall-runoffcurve)thatunifiesthedifferentmodelingapproachesoftheSCS-CNmethod,VIC, PDM, andTOPMODEL.Thesegeneralexpressionsincludesbothprethresholdandthreshold-excessrunoffcompo- nents over the respective fractions of area ð12Fð(cid:3)S;R(cid:3)ÞÞb and Fð(cid:3)S;R(cid:3)Þ. Each runoff area is modeled with a t t distributionofstoragecapacitythresholdswhereeachlocalthresholdmayactasaproxyformanydifferent rainfall-runoff mechanisms, e.g., subsurface flow and overland flow by saturation of infiltration excess [Bartlett et al., 2016; McDonnell, 2013]. Aside from the expression for Fð(cid:3)S;R(cid:3)Þ, thespatial variability of pre- t thresholdandthreshold-excessrunoffisalsorepresentedbytherunoffPDFp ðQÞ.Thisspatialcharacteriza- Q tionofrunoffisfurtherenhancedbythefactthateachmodelaccountsforthespatialdistributionofrainfall withtheexponentialPDFofequation(6).Forallmodels,thefractionofareabandtheaverageantecedent potentialretention,(cid:3)S,governthemagnitudeandspatialextentoftherunoffresponse. BARTLETTETAL. FRAMEWORKFOREVENT-BASEDSEMIDISTRIBUTEDMODELING 7044
Description: