EngineeringFractureMechanics77(2010)3227–3245 ContentslistsavailableatScienceDirect Engineering Fracture Mechanics journal homepage: www.elsevier.com/locate/engfracmech Fracture toughness of exponential layer-by-layer polyurethane/poly(acrylic acid) nanocomposite films E. Khenga, H.R. Iyera, P. Podsiadloc,d, A.K. Kaushika, N.A. Kotovc, E.M. Arrudaa, A.M. Waasa,b,⇑ aDepartmentofMechanicalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA bDepartmentofAerospaceEngineering,UniversityofMichigan,AnnArbor,MI48109,USA cDepartmentofChemicalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA dCenterforNanoscaleMaterials,ArgonneNationalLaboratory,Argonne,IL60439,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Thispapercharacterizesthefracturetoughnessoflayer-by-layer(LBL)manufacturedthin Received29January2010 films with elastic polyurethane, a tough polymer, and poly(acrylic acid) as a stiffening Receivedinrevisedform27July2010 agent.Asingle-edge-notchtension(SENT)specimenisusedtostudymodeIcrackpropa- Accepted8August2010 gationasafunctionofappliedloading.Experimentalresultsforthefull-fieldtimehistories Availableonline31August2010 ofthestrainmapsinthefracturingfilmhavebeenanalyzedtoobtainR-curveparameters forthenanocomposite.Inparticular,byusingthestrainmaps,detailsofthetractionlaw Keywords: aremeasured.Avalidatedfinitestrainphenomenologicalvisco-plasticconstitutivemodel Nanocomposite is used to characterize the nanocomposite film while a discrete cohesive zone model Fracturetoughness (DCZM)isimplementedtomodelthefracturebehavior.TheLBLmanufacturednanocom- Thinfilm Finitestrain positeisfoundtodisplayahigherfracturetoughnessthantheunstiffenedbasepolymer. Finiteelements (cid:2)2010ElsevierLtd.Allrightsreserved. 1.Introduction Thereisgrowinginterestinmanufacturingsyntheticnanocompositeswithnano-scalecontrol,thathavethefinehierar- chialstructurefoundinnaturalnanocomposites,suchasseashellnacre,bone,orspidersilk[1–3].Suchnanocompositesare foundtodisplayexceptionalmechanicalproperties,e.g.fracturetoughness,strengthandstiffness,oftenexceedingtheprop- ertiesofmanmadesynthetics.Thelayer-by-layer(LBL)manufacturingtechnique[4]hasbeenusedtoproducehierarchically structuredmaterialswithveryhighstrengthsandstiffnessesrelativetotheirconstituentmaterials[5–7].Anecessarydraw- backofLBLmanufacturingistheslowdepositionrate,whichlimitstheshapeandformofmaterialspreparedwiththismeth- odtothinfilmsandcoatings. OfconcerninthispaperisthecharacterizationoffracturetoughnessofexponentialLBLmanufacturedpolymernanocom- positescomposedofawater-solublepolymerandawater-solublestiffeningagentthathasagooddistributionofthehard- ening agent through the polymer matrix [6,7]. The exponential LBL method has lead to a significant reduction in the manufacturingtimeoftheassembledfilms.Thepolymerandthestiffeningagentareoppositelycharged,resultinginstrong ionicbondsbetweenthepolymermatrixandthehardeningagent.Inthepresentstudy,toughandelasticpolyurethaneis usedasthebasematrixpolymer,andpoly(acrylicacid)isusedasthestiffeningagent,resultinginananocompositewith improvedstiffnessandconsiderableductility. Whenapre-existingcrackinthesefilmsisadvancedbytheapplicationofmechanicalloads,severecrackbluntingisfirst observedwithalargeplasticzonesurroundingthecracktipthatdissipatesenergy.Thisplasticzonecanactivateseveral nano-scale mechanisms that leads to a R-curve response [8]. The additional toughening is regarded as a basic material ⇑ Correspondingauthorat:DepartmentofMechanicalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA. E-mailaddress:[email protected](A.M.Waas). 0013-7944/$-seefrontmatter(cid:2)2010ElsevierLtd.Allrightsreserved. doi:10.1016/j.engfracmech.2010.08.006 3228 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 propertythatcanbecapturedbyahomogenized,non-lineartraction-separationlaw,inconjunctionwithasuitablefinite elementsimulationofspecimengeometryandloading.Inordertocarryoutthisanalysis,itisalsonecessarytocharacterize theconstitutiveresponseofthefilmsundergoingfinitedeformation. Thefracturetoughnessismeasuredbycarryingoutaseriesofsingleedge-notchtensionmode-Ifracturetestsonfree standingnanocompositethinfilms(planestress).Numericalsimulationofthefracturetestsinassociationwithanaccurate finitedeformationconstitutivemodelforthefilmmaterialleadstoamethodthatallowscalculationofthefractureenergy.In thenumericalsimulation,carriedoutusingthecommercialsoftwareABAQUS,adiscretecohesivezonemodel(DCZM)[10]is implementedtorepresentthematerialaheadoftheinitialcrack.Duringthequasi-staticgrowthofthecrack,anincrementof externalworkinputisbalancedbythesumofthestoredstrainenergy,theplasticenergydissipatedandtheenergyasso- ciated with fracture. Therefore the latter can be determined by knowing the plastic energy dissipated, the elastic energy storedandtheexternalworkdonetoadvancethecrack. Toaccuratelyobtaintheplasticenergydissipatedwhileaccountingforloadingrateeffects,thefilm’sconstitutivebehav- iorhastobeaccuratelymodeledforbothloadingandunloadingthatoccursduringthecrackgrowthevent.Aphenomeno- logicalvisco-plasticconstitutivemodel,whichisanextensionoftheArruda–Boycemodel[15,13],isusedtocapturethenon- linearlargestrainvisco-plasticbehaviorwithlargeresidualplasticstrainsafterunloading. TheDCZMelementswhichrepresentthefracturezoneareprescribedthroughanon-lineartraction-separationlawwhich isiteratedtomatchthenumericalpredictionstotheexperimentalmeasurements.Atraction-separationlawhastwodefin- ingcharacteristics–thecohesivestrengthandthefracturetoughness[18].Sincethecohesivestrengthcanbedetermined fromcarefulexaminationoftheexperimentalstrains,thefracturetoughnessdistributionistheonlyunknownforwhichiter- ationisneeded.Thetraction-separationlawnumericallyreproducingtheexperimentthereforeprovidesthefracturetough- nessdistributioninthefracturezone.Thefracturetoughnessdistributionthatresultsinthebestmatchofthenumerical simulationtotheexperimentgivesusinsighttothetougheningmechanismsatworkinthefracturezone.R-curvebehavior isobservedalongthefracturezone.Alargerfracturetoughnessandcohesivestrengthareobservedfurtherfromtheinitial crack,implyingthatboththesequantitiesareincreasedasmoreplasticworkisdoneintheneighboringsubstrateasthe crackadvances. 2.Experiments 2.1.Manufacturingthefilmsandsamples The films are manufactured by alternately dipping glass slides into dilute aqueous dispersions (1wt.%) of positively chargedpolyurethaneandnegativelychargedpoly(acrylicacid)(PU/PAA).Tomanufactureasinglefilm,thisprocessisre- peated100timesandproducesathinfilmthathasanaveragethicknessof40lm.Thefilmsaredetachedfromtheglass slideusinghydro-fluoricacidandthendriedinaheatedchamber.Single-filmsamplesaremanufacturedonstandardmicro- scopeglassslides,resultinginalengthofapproximately70mmandaheightof25mm.Thesearecuttotheappropriatesizes forvariouscharacterizationtests.AfreestandingfilmisshowninFig.1.ThePU/PAAsamplesdiscussedinthispaperareall five-filmstacks,andaremanufacturedbypressingfivesingle-filmsamplestogetherinaheatedhydraulicpressat110(cid:3)Cand 15MPafor30min.Apurecationicpolyurethane(PU)sampleisalsomadefromthepolyurethanesolutionbyheatingthe solutioninapetridish,therebyremovingthewatermolecules.ThepurePUsampleisstudiedforthepurposeofcomparison. 2.2.Tensiletestsofthefilms Thestrainrate-dependentpropertiesofthefilmsaremeasuredbytensiletestsusingspecimensillustratedinFig.2.Ten- siletestsamplesaremanufacturedtoatotallengthof25±1mm,agaugelengthof13±2mmandaheightof2.5±0.5mm. Fig.1. PhotographoftranslucenteLBLPU/PAAfilmafterdetachingandheating. E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3229 Fig.2. Tensiletestspecimens. Thetestswerecarriedoutonsamplesthatwerebetween200lmand300lmthick,underdisplacementcontrolloadingat nominalratesof0.16mm/sand0.016mm/s.Characteristicengineeringstress–engineeringstraincurvesforthesamplesare showninFig.3.Strainsaredeterminedusingopticalimagestakenwithahighresolutioncameraofaspecklepatterndis- tributedonthesurfaceofthefilmusingacrylicpaintappliedwithanairbrush,andthetensileforceinthespecimensismea- suredwithaloadcellattachedtothemechanicaltestingmachine.Thicknessesofthesamplesaremeasuredwiththeaidofa scanningelectronmicroscope.Thesamplesarecoatedwitha5nmthickgoldlayertopreventcharginganddamageofthe sampleinthescanningelectronmicroscope.Thetensiletestresultsareusedtocharacterizethefilmmaterialforthefinite elementmodelthatisusedinthepresentwork. 2.3.Singlenotchfracturetests Thefracturetoughnessofathinfilminplanestressismeasuredbymatchingnumericalsimulationstophysicalexper- imentsofasingle-edge-notchtensionmode-Ifracturetest.Thissectiondescribestheseexperimentalfracturetests. Thesamplesareattachedtoflatsampleholderswithathinlayerofepoxyandasinglenotchismadewithasurgicalrazor blade in the film perpendicular to an edge as shown in Fig. 4. The free standing film between the sample holders is 5±0.3mm by 25±2mm. The initial crack is cut to dimension of 4.5±0.5mm, leaving an un-fractured height, h , of 0 20.5±0.5mm.Afixedcoordinatesystemisusedtodiscusstheexperimentalresultsandassociatednumericalsimulation results.Theoriginofthecoordinatesystemislocatedalongtheexpectedcrackplane,atthemidpointoftheheightofthe specimen,asindicatedinFig.4.Thefracturetestsarecarriedoutonadisplacementcontrolledtable-toptensiletestsetup withastep-motordrive.ThesetupisshowninFig.5.Thedisplacementrateissetto0.003mm/s.Imagesofthespecklepat- ternarecapturedonceeverytenseconds.Thedisplacementbetweenthesampleholdersismeasuredwithalinearvariable differentialtransformer(LVDT)andisconfirmedwiththedataobtainedfromthespecklepattern.Thetensileforcesaremea- sured with a 150N load cell. The resolution of the load cell is 0.0068N, which corresponds to a resolution in stress of 0.0013MPa.TheresolutionoftheLVDTis0.00012mm.Thestrainresolutionofthedigitalimagecorrelationtechniqueis 0.001. Fig.3. Characteristicengineeringstress–engineeringstraincurvesof5filmPU/PAAstacksatdifferentstretchrates. 3230 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.4. Dimensionsofexperimentalsetupoffilmsamples. 2.4.Forcedisplacementdescriptionoffracturetests ThePU/PAAsamplesallfracturedinauniformmanner,withthecrackpropagatingcleanlythroughtheun-fracturedheight ofthesampleinthemiddle(the‘‘ligament”)ofthesample.Fig.6aandFig.6bdescribesthefracture.ThedatasetforthePU/ PAAsamplesshowminimalvariation–samples1–3representarepeatabledataset.ThesecurvesareshowninFig.7. ThedatasetforthepurePUsamplesalsoshowsminimalvariation,thetwosamplestestedagreewitheachother.These curvesareshowninFig.8a.ThePU/PAAsampleshaveamaximumstressof16MPaandamaximumnormalizeddisplace- mentof1.45.ThePU/PAAsamplesalsohaveanoverallenergydensityof80.9N/mm.Thisenergydensityisobtainedbynor- malizingthetotalenergyexpendedbytheligamentcross-sectionalarea.Itisnotedthattheoverallenergydensityincludes E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3231 Fig.5. Experimentalsetup. theenergyexpendedintheplasticdeformationofthesubstrateaswellasthefractureofthespecimen.ThePUfracturetests showthatthepurepolyurethanehasamuchlowermaximumstressof4MPa,butahighernormalizeddisplacementof4.16. TheoverallenergydensityofpurePUis58.2N/mm.Fig.8bisacomparisonofthenormalizedforceagainstnormalizeddis- placementcurvesforpurePUandPU/PAA. 2.5.Cracklocationoffracturetests Thespecklepatternsoneithersideofthecracktipareanalyzedbyfollowingthedeformationhistoryofselectedisolated specklesoneithersideofthecrackpath.Foreachuniquepairofspeckles,therelativechangeofdistance-horizontaldisplace- mentplotsareobtainedasinFig.9.Itisdeterminedthatthecrackhasmovedbetweenapairofspeckleswhentherateof relativechangeofdistancebetweenthemincreasesabruptly,indicatingthatthematerialbetweenthemhasbrokenatthat timestep.Inthismanner,theinstantaneouscrackpositionasafunctionoftime,andhence,asafunctionofexternalloadis recorded.AtypicalcrackpositiongraphforthePU/PAAsampleisshowninFig.10. 2.6.Strainmapoffracturetests In addition to the force–displacement data, the speckle images are analyzed to gather other local information. The stretchesinthe1directionareanalyzedatspecificpointsinthespecimenasthecrackgrows.Partialunloadingisobserved asthecrackmovespastspecificpoints.PlotsforthePU/PAAsamplesareincludedinFigs.11and12. The Lagrangianstrain tensor E can be related to severaldeformation measures as shown in [12]. The E component ij 11 strainisrelatedtotheprincipalstretchk through: 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi k ¼ 1þ2E ð1Þ 1 11 where du 1"(cid:3)du (cid:4)2 (cid:3)du (cid:4)2# E ¼ 1þ 1 þ 2 ð2Þ 11 dX 2 dX dX 1 1 1 and, u ¼x (cid:2)X ð3Þ i i i Here,u istheithdisplacementcomponentwhichisrelatedtotheundeformed,X,anddeformed,x,coordinatesofthemate- i i i rialpointbeinganalyzed. 2.7.Full-fieldstrainmapsandfracturestresscalibration Inadditiontothestretchescomputedasdescribedabove,Aramissoftwareversion1.6isusedtocalculatestrainmapsof thesampleduringdeformation.Asamplestrain,E ,mapisshowninFig.13.TheAramisstrainmapsshowthatastrain 11 3232 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.6. Descriptionoffracture.Initialcrackpropagatesthroughtheheightofthesample,resultinginfastfracture. concentrationmovesaheadofthecracktip.Theonsetofthestrainconcentrationsignalstheactivationofthefractureevent. ConsiderahorizontallinedrawnacrosstheAramisplotinFig.13a.ItisseenthattheE strainisuniformacrossthishor- 11 izontalcrosssection.ThesamehorizontallineisdrawninFig.13bandhereitisnotedthattheE strainisnolongeruni- 11 form.Thisindicatesthatthestrainatthecenterlineishigherthannearthegrips.Thisstrainconcentrationindicatesthat thereissofteninginthisregion,allowingthestraintoincreasemuchmoreatthislocationforagivenstateofloading.This softeningisassociatedwiththeratedependentplasticenergythatisdissipatedwhilethecrackisadvancing,consequently, E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3233 Fig.7. Normalizedfracturecurvesfor5filmPU/PAAstacks. capturingthisplasticdissipationaccuratelyisneededinordertoextractthefracturetoughnessofthefilms.Thestressat whichthefractureeventisactivatedcanbeidentifiedbyexaminingthetruestress–truestraincurvefromthematerialchar- acterizationtests.Sincethefull-fieldstrainsareextractedfromtheAramisdata,correlatingthisstraintothetruestress–true straincurveallowsdeterminationofthelocalstress.Thisprocessisrepeatedfordifferentpointsalongthecenterlineanda fracturestresscalibrationisobtainedintheformofanR-curve[9,8].Theexperimentalfracturestressesasafunctionofpo- sitionaswellastheR-curverepresentingthechangingresistancetocrackadvanceareshowninFig.14.Thismeasureddis- tributionofcohesivestrengthisimportantinestablishingnumericalmodelsforstudyingfractureofthesefilms. 3.Finiteelementmodel 3.1.DescriptionofthePU/PAAconstitutivemodel Thelargedeformationstress–strainbehaviorofthepolymernanocompositeshowsthefollowingresponse: 1. Non-linearlargestrainvisco-plasticbehavior. 2. Strainratedependencewhichislowbutispresent. 3. Highplasticstrainsafterunloading. Aphenomenologicalvisco-plasticconstitutivemodelwasdevelopedthatcapturestheobservedmacroscopicmechanical response of the material. The kinematics of the constitutive model developed for the PU/PAA polymer nanocomposite is basedonthatforthermoplasticpolyurethane(TPU),developedbyQiandBoyce[13,14],aschematicrepresentationofwhich isshowninFig.15.Therearetwobranchesthatareinparallel–anon-linearspringbranchwhichisbasedontheeight-chain Arruda–Boycemodel[15],andtheelasto-visco-plasticcomponent,whichinturnconsistsofalinearelasticspringandavis- co-plasticdashpot.ThemacroscopicdeformationgradientFactingonboththesebranchesisthesameandthetotalCauchy stressTisthesumofthecontributionsfromeachbranch. FN¼FV ¼F ð4Þ T¼TVþTN ð5Þ wherethesuperscriptNreferstothenon-linearhyperelasticspringandVtothevisco-plasticbranchinthemodel. Thehyperelasticrubberyspringcapturestheentropychangeduetotheorientationandstretchingofthemolecularnet- work.Theeight-chainmodeldevelopedbyArrudaandBoyce[15],isusedincomputingthestressesasitcapturestheequi- libriumlargestretchbehavioraccurately.Volumechangesareneglectedinthisbranchbycomputingthestressesbasedon thedeviatoricpartofthemacroscopicdeformationgradientasshownbelow.Thereaderisreferedto[15]formoredetailsof thepresentmodel.TheexpressionfortheCauchystressinthisbranchhastheform: p l ffiNffiffiffi (cid:3)k (cid:4) TN¼3Jr kchainL(cid:2)1 pchffiNaffiiffiffin B0 ð6Þ 3234 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.8. Normalizedfracturecurvesfor(a)purepolyurethaneand(b)PU/PAAandpurepolyurethane. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi (cid:2)k2þ(cid:2)k2þ(cid:2)k2 k ¼ 1 2 3 ð7Þ chain 3 FN¼J(cid:2)1=3FN ð8Þ B¼FNFNT ð9Þ 1 B0¼B(cid:2) trðBÞI ð10Þ 3 3(cid:2)n2 L(cid:2)1ðnÞ(cid:3)n ð11Þ 1(cid:2)n2 wherel =nkH,withnbeingthechaindensity(numberofmolecularchainsperunitreferencevolume)oftheunderlying r macromolecularnetwork,kistheBoltzmann’sconstantandHistheabsolutetemperature.Nisthenumberof‘‘rigidlinks” betweentwocrosslinksandBistheisochoricleftCauchy–Greentensor.k isthestretchoneachchainintheeight-chain chain E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3235 Fig.9. Samplestrainoftwodotsoneithersideofcracksurface. Fig.10. Comparisonofexperimentalandnumericalcrackpositioncurvesfor5filmPU/PAAstack. networkthatiscomputedbasedonthesquaresoftheprincipalstretchesk ,k andk ,whichareobtainedbythespectral 1 2 3 decompositionoftheleftCauchy–Greenstraintensor. Theelasto-visco-plasticbranchhasamultiplicativesplitofthedeformationgradient,whichisusedincomputingthepart ofthedeformationseenbythelinearelasticspring.Theinitialelasticpartoftheoverallnon-linearmacroscopicresponseof thematerialisaccountedforthroughthestresscontributionfromthelinearspring. FV ¼FVeFVt ð12Þ whereFVeisthedeformationgradientoftheelasticspringandFVtisthedeformationgradientofthevisco-plasticdashpot. Furthermore,thedecompositionofthevelocitygradientL gives V LV ¼F_VFV(cid:2)1 ¼F_VeFVe(cid:2)1þFVeF_VtFVt(cid:2)1FVe(cid:2)1 ð13Þ LVt¼F_VtFVt(cid:2)1 ¼DVtþWVt ð14Þ whereDVtandWVtaretherateofstretchingandthespin,respectively. Withoutlossofgenerality,wetake[16] 3236 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.11. ComparisonofexperimentalandnumericalstraincurveatY=5mmfor5filmPU/PAAstack. Fig.12. ComparisonofexperimentalandnumericalstraincurveatY=7.5mmfor5filmPU/PAAstack. FVe¼VVeRVe ð15Þ 1 (cid:5) (cid:6) TV ¼ Le lnVVe ð16Þ detFVe WVt¼0 ð17Þ where,Leisthefourth-ordertensormodulusofelasticconstants;VVeandRVearetheleftstretchtensorandtherotationten- sor,obtainedfromthepolardecompositionoftheelasticdeformationgradient. Thevisco-plasticstretchrateDVtisconstitutivelyprescribedas c_t DVt¼pffi2ffiffisvTV0 ð18Þ wherec_t denotesthevisco-plasticshearstrainrateands istheequivalentshearstress.Theconstitutiveequationforthe V evolutionofvisco-plasticshearstrainrateisgivenas (cid:7) A(cid:4)s(cid:7) (cid:3)s (cid:4)(cid:8)(cid:8) c_t¼c_ exp (cid:2) 1(cid:2) V ð19Þ 0 kH s inwhichc_ isthepre-exponentialfactorproportionaltotheattemptfrequencyandsistheathermalshearstrength,which 0 representstheresistancetothevisco-plasticsheardeformation.
Description: