ebook img

Fracture toughness of exponential layer-by-layer polyurethane/poly(acrylic acid) PDF

19 Pages·2010·2.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fracture toughness of exponential layer-by-layer polyurethane/poly(acrylic acid)

EngineeringFractureMechanics77(2010)3227–3245 ContentslistsavailableatScienceDirect Engineering Fracture Mechanics journal homepage: www.elsevier.com/locate/engfracmech Fracture toughness of exponential layer-by-layer polyurethane/poly(acrylic acid) nanocomposite films E. Khenga, H.R. Iyera, P. Podsiadloc,d, A.K. Kaushika, N.A. Kotovc, E.M. Arrudaa, A.M. Waasa,b,⇑ aDepartmentofMechanicalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA bDepartmentofAerospaceEngineering,UniversityofMichigan,AnnArbor,MI48109,USA cDepartmentofChemicalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA dCenterforNanoscaleMaterials,ArgonneNationalLaboratory,Argonne,IL60439,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Thispapercharacterizesthefracturetoughnessoflayer-by-layer(LBL)manufacturedthin Received29January2010 films with elastic polyurethane, a tough polymer, and poly(acrylic acid) as a stiffening Receivedinrevisedform27July2010 agent.Asingle-edge-notchtension(SENT)specimenisusedtostudymodeIcrackpropa- Accepted8August2010 gationasafunctionofappliedloading.Experimentalresultsforthefull-fieldtimehistories Availableonline31August2010 ofthestrainmapsinthefracturingfilmhavebeenanalyzedtoobtainR-curveparameters forthenanocomposite.Inparticular,byusingthestrainmaps,detailsofthetractionlaw Keywords: aremeasured.Avalidatedfinitestrainphenomenologicalvisco-plasticconstitutivemodel Nanocomposite is used to characterize the nanocomposite film while a discrete cohesive zone model Fracturetoughness (DCZM)isimplementedtomodelthefracturebehavior.TheLBLmanufacturednanocom- Thinfilm Finitestrain positeisfoundtodisplayahigherfracturetoughnessthantheunstiffenedbasepolymer. Finiteelements (cid:2)2010ElsevierLtd.Allrightsreserved. 1.Introduction Thereisgrowinginterestinmanufacturingsyntheticnanocompositeswithnano-scalecontrol,thathavethefinehierar- chialstructurefoundinnaturalnanocomposites,suchasseashellnacre,bone,orspidersilk[1–3].Suchnanocompositesare foundtodisplayexceptionalmechanicalproperties,e.g.fracturetoughness,strengthandstiffness,oftenexceedingtheprop- ertiesofmanmadesynthetics.Thelayer-by-layer(LBL)manufacturingtechnique[4]hasbeenusedtoproducehierarchically structuredmaterialswithveryhighstrengthsandstiffnessesrelativetotheirconstituentmaterials[5–7].Anecessarydraw- backofLBLmanufacturingistheslowdepositionrate,whichlimitstheshapeandformofmaterialspreparedwiththismeth- odtothinfilmsandcoatings. OfconcerninthispaperisthecharacterizationoffracturetoughnessofexponentialLBLmanufacturedpolymernanocom- positescomposedofawater-solublepolymerandawater-solublestiffeningagentthathasagooddistributionofthehard- ening agent through the polymer matrix [6,7]. The exponential LBL method has lead to a significant reduction in the manufacturingtimeoftheassembledfilms.Thepolymerandthestiffeningagentareoppositelycharged,resultinginstrong ionicbondsbetweenthepolymermatrixandthehardeningagent.Inthepresentstudy,toughandelasticpolyurethaneis usedasthebasematrixpolymer,andpoly(acrylicacid)isusedasthestiffeningagent,resultinginananocompositewith improvedstiffnessandconsiderableductility. Whenapre-existingcrackinthesefilmsisadvancedbytheapplicationofmechanicalloads,severecrackbluntingisfirst observedwithalargeplasticzonesurroundingthecracktipthatdissipatesenergy.Thisplasticzonecanactivateseveral nano-scale mechanisms that leads to a R-curve response [8]. The additional toughening is regarded as a basic material ⇑ Correspondingauthorat:DepartmentofMechanicalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA. E-mailaddress:[email protected](A.M.Waas). 0013-7944/$-seefrontmatter(cid:2)2010ElsevierLtd.Allrightsreserved. doi:10.1016/j.engfracmech.2010.08.006 3228 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 propertythatcanbecapturedbyahomogenized,non-lineartraction-separationlaw,inconjunctionwithasuitablefinite elementsimulationofspecimengeometryandloading.Inordertocarryoutthisanalysis,itisalsonecessarytocharacterize theconstitutiveresponseofthefilmsundergoingfinitedeformation. Thefracturetoughnessismeasuredbycarryingoutaseriesofsingleedge-notchtensionmode-Ifracturetestsonfree standingnanocompositethinfilms(planestress).Numericalsimulationofthefracturetestsinassociationwithanaccurate finitedeformationconstitutivemodelforthefilmmaterialleadstoamethodthatallowscalculationofthefractureenergy.In thenumericalsimulation,carriedoutusingthecommercialsoftwareABAQUS,adiscretecohesivezonemodel(DCZM)[10]is implementedtorepresentthematerialaheadoftheinitialcrack.Duringthequasi-staticgrowthofthecrack,anincrementof externalworkinputisbalancedbythesumofthestoredstrainenergy,theplasticenergydissipatedandtheenergyasso- ciated with fracture. Therefore the latter can be determined by knowing the plastic energy dissipated, the elastic energy storedandtheexternalworkdonetoadvancethecrack. Toaccuratelyobtaintheplasticenergydissipatedwhileaccountingforloadingrateeffects,thefilm’sconstitutivebehav- iorhastobeaccuratelymodeledforbothloadingandunloadingthatoccursduringthecrackgrowthevent.Aphenomeno- logicalvisco-plasticconstitutivemodel,whichisanextensionoftheArruda–Boycemodel[15,13],isusedtocapturethenon- linearlargestrainvisco-plasticbehaviorwithlargeresidualplasticstrainsafterunloading. TheDCZMelementswhichrepresentthefracturezoneareprescribedthroughanon-lineartraction-separationlawwhich isiteratedtomatchthenumericalpredictionstotheexperimentalmeasurements.Atraction-separationlawhastwodefin- ingcharacteristics–thecohesivestrengthandthefracturetoughness[18].Sincethecohesivestrengthcanbedetermined fromcarefulexaminationoftheexperimentalstrains,thefracturetoughnessdistributionistheonlyunknownforwhichiter- ationisneeded.Thetraction-separationlawnumericallyreproducingtheexperimentthereforeprovidesthefracturetough- nessdistributioninthefracturezone.Thefracturetoughnessdistributionthatresultsinthebestmatchofthenumerical simulationtotheexperimentgivesusinsighttothetougheningmechanismsatworkinthefracturezone.R-curvebehavior isobservedalongthefracturezone.Alargerfracturetoughnessandcohesivestrengthareobservedfurtherfromtheinitial crack,implyingthatboththesequantitiesareincreasedasmoreplasticworkisdoneintheneighboringsubstrateasthe crackadvances. 2.Experiments 2.1.Manufacturingthefilmsandsamples The films are manufactured by alternately dipping glass slides into dilute aqueous dispersions (1wt.%) of positively chargedpolyurethaneandnegativelychargedpoly(acrylicacid)(PU/PAA).Tomanufactureasinglefilm,thisprocessisre- peated100timesandproducesathinfilmthathasanaveragethicknessof40lm.Thefilmsaredetachedfromtheglass slideusinghydro-fluoricacidandthendriedinaheatedchamber.Single-filmsamplesaremanufacturedonstandardmicro- scopeglassslides,resultinginalengthofapproximately70mmandaheightof25mm.Thesearecuttotheappropriatesizes forvariouscharacterizationtests.AfreestandingfilmisshowninFig.1.ThePU/PAAsamplesdiscussedinthispaperareall five-filmstacks,andaremanufacturedbypressingfivesingle-filmsamplestogetherinaheatedhydraulicpressat110(cid:3)Cand 15MPafor30min.Apurecationicpolyurethane(PU)sampleisalsomadefromthepolyurethanesolutionbyheatingthe solutioninapetridish,therebyremovingthewatermolecules.ThepurePUsampleisstudiedforthepurposeofcomparison. 2.2.Tensiletestsofthefilms Thestrainrate-dependentpropertiesofthefilmsaremeasuredbytensiletestsusingspecimensillustratedinFig.2.Ten- siletestsamplesaremanufacturedtoatotallengthof25±1mm,agaugelengthof13±2mmandaheightof2.5±0.5mm. Fig.1. PhotographoftranslucenteLBLPU/PAAfilmafterdetachingandheating. E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3229 Fig.2. Tensiletestspecimens. Thetestswerecarriedoutonsamplesthatwerebetween200lmand300lmthick,underdisplacementcontrolloadingat nominalratesof0.16mm/sand0.016mm/s.Characteristicengineeringstress–engineeringstraincurvesforthesamplesare showninFig.3.Strainsaredeterminedusingopticalimagestakenwithahighresolutioncameraofaspecklepatterndis- tributedonthesurfaceofthefilmusingacrylicpaintappliedwithanairbrush,andthetensileforceinthespecimensismea- suredwithaloadcellattachedtothemechanicaltestingmachine.Thicknessesofthesamplesaremeasuredwiththeaidofa scanningelectronmicroscope.Thesamplesarecoatedwitha5nmthickgoldlayertopreventcharginganddamageofthe sampleinthescanningelectronmicroscope.Thetensiletestresultsareusedtocharacterizethefilmmaterialforthefinite elementmodelthatisusedinthepresentwork. 2.3.Singlenotchfracturetests Thefracturetoughnessofathinfilminplanestressismeasuredbymatchingnumericalsimulationstophysicalexper- imentsofasingle-edge-notchtensionmode-Ifracturetest.Thissectiondescribestheseexperimentalfracturetests. Thesamplesareattachedtoflatsampleholderswithathinlayerofepoxyandasinglenotchismadewithasurgicalrazor blade in the film perpendicular to an edge as shown in Fig. 4. The free standing film between the sample holders is 5±0.3mm by 25±2mm. The initial crack is cut to dimension of 4.5±0.5mm, leaving an un-fractured height, h , of 0 20.5±0.5mm.Afixedcoordinatesystemisusedtodiscusstheexperimentalresultsandassociatednumericalsimulation results.Theoriginofthecoordinatesystemislocatedalongtheexpectedcrackplane,atthemidpointoftheheightofthe specimen,asindicatedinFig.4.Thefracturetestsarecarriedoutonadisplacementcontrolledtable-toptensiletestsetup withastep-motordrive.ThesetupisshowninFig.5.Thedisplacementrateissetto0.003mm/s.Imagesofthespecklepat- ternarecapturedonceeverytenseconds.Thedisplacementbetweenthesampleholdersismeasuredwithalinearvariable differentialtransformer(LVDT)andisconfirmedwiththedataobtainedfromthespecklepattern.Thetensileforcesaremea- sured with a 150N load cell. The resolution of the load cell is 0.0068N, which corresponds to a resolution in stress of 0.0013MPa.TheresolutionoftheLVDTis0.00012mm.Thestrainresolutionofthedigitalimagecorrelationtechniqueis 0.001. Fig.3. Characteristicengineeringstress–engineeringstraincurvesof5filmPU/PAAstacksatdifferentstretchrates. 3230 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.4. Dimensionsofexperimentalsetupoffilmsamples. 2.4.Forcedisplacementdescriptionoffracturetests ThePU/PAAsamplesallfracturedinauniformmanner,withthecrackpropagatingcleanlythroughtheun-fracturedheight ofthesampleinthemiddle(the‘‘ligament”)ofthesample.Fig.6aandFig.6bdescribesthefracture.ThedatasetforthePU/ PAAsamplesshowminimalvariation–samples1–3representarepeatabledataset.ThesecurvesareshowninFig.7. ThedatasetforthepurePUsamplesalsoshowsminimalvariation,thetwosamplestestedagreewitheachother.These curvesareshowninFig.8a.ThePU/PAAsampleshaveamaximumstressof16MPaandamaximumnormalizeddisplace- mentof1.45.ThePU/PAAsamplesalsohaveanoverallenergydensityof80.9N/mm.Thisenergydensityisobtainedbynor- malizingthetotalenergyexpendedbytheligamentcross-sectionalarea.Itisnotedthattheoverallenergydensityincludes E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3231 Fig.5. Experimentalsetup. theenergyexpendedintheplasticdeformationofthesubstrateaswellasthefractureofthespecimen.ThePUfracturetests showthatthepurepolyurethanehasamuchlowermaximumstressof4MPa,butahighernormalizeddisplacementof4.16. TheoverallenergydensityofpurePUis58.2N/mm.Fig.8bisacomparisonofthenormalizedforceagainstnormalizeddis- placementcurvesforpurePUandPU/PAA. 2.5.Cracklocationoffracturetests Thespecklepatternsoneithersideofthecracktipareanalyzedbyfollowingthedeformationhistoryofselectedisolated specklesoneithersideofthecrackpath.Foreachuniquepairofspeckles,therelativechangeofdistance-horizontaldisplace- mentplotsareobtainedasinFig.9.Itisdeterminedthatthecrackhasmovedbetweenapairofspeckleswhentherateof relativechangeofdistancebetweenthemincreasesabruptly,indicatingthatthematerialbetweenthemhasbrokenatthat timestep.Inthismanner,theinstantaneouscrackpositionasafunctionoftime,andhence,asafunctionofexternalloadis recorded.AtypicalcrackpositiongraphforthePU/PAAsampleisshowninFig.10. 2.6.Strainmapoffracturetests In addition to the force–displacement data, the speckle images are analyzed to gather other local information. The stretchesinthe1directionareanalyzedatspecificpointsinthespecimenasthecrackgrows.Partialunloadingisobserved asthecrackmovespastspecificpoints.PlotsforthePU/PAAsamplesareincludedinFigs.11and12. The Lagrangianstrain tensor E can be related to severaldeformation measures as shown in [12]. The E component ij 11 strainisrelatedtotheprincipalstretchk through: 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi k ¼ 1þ2E ð1Þ 1 11 where du 1"(cid:3)du (cid:4)2 (cid:3)du (cid:4)2# E ¼ 1þ 1 þ 2 ð2Þ 11 dX 2 dX dX 1 1 1 and, u ¼x (cid:2)X ð3Þ i i i Here,u istheithdisplacementcomponentwhichisrelatedtotheundeformed,X,anddeformed,x,coordinatesofthemate- i i i rialpointbeinganalyzed. 2.7.Full-fieldstrainmapsandfracturestresscalibration Inadditiontothestretchescomputedasdescribedabove,Aramissoftwareversion1.6isusedtocalculatestrainmapsof thesampleduringdeformation.Asamplestrain,E ,mapisshowninFig.13.TheAramisstrainmapsshowthatastrain 11 3232 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.6. Descriptionoffracture.Initialcrackpropagatesthroughtheheightofthesample,resultinginfastfracture. concentrationmovesaheadofthecracktip.Theonsetofthestrainconcentrationsignalstheactivationofthefractureevent. ConsiderahorizontallinedrawnacrosstheAramisplotinFig.13a.ItisseenthattheE strainisuniformacrossthishor- 11 izontalcrosssection.ThesamehorizontallineisdrawninFig.13bandhereitisnotedthattheE strainisnolongeruni- 11 form.Thisindicatesthatthestrainatthecenterlineishigherthannearthegrips.Thisstrainconcentrationindicatesthat thereissofteninginthisregion,allowingthestraintoincreasemuchmoreatthislocationforagivenstateofloading.This softeningisassociatedwiththeratedependentplasticenergythatisdissipatedwhilethecrackisadvancing,consequently, E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3233 Fig.7. Normalizedfracturecurvesfor5filmPU/PAAstacks. capturingthisplasticdissipationaccuratelyisneededinordertoextractthefracturetoughnessofthefilms.Thestressat whichthefractureeventisactivatedcanbeidentifiedbyexaminingthetruestress–truestraincurvefromthematerialchar- acterizationtests.Sincethefull-fieldstrainsareextractedfromtheAramisdata,correlatingthisstraintothetruestress–true straincurveallowsdeterminationofthelocalstress.Thisprocessisrepeatedfordifferentpointsalongthecenterlineanda fracturestresscalibrationisobtainedintheformofanR-curve[9,8].Theexperimentalfracturestressesasafunctionofpo- sitionaswellastheR-curverepresentingthechangingresistancetocrackadvanceareshowninFig.14.Thismeasureddis- tributionofcohesivestrengthisimportantinestablishingnumericalmodelsforstudyingfractureofthesefilms. 3.Finiteelementmodel 3.1.DescriptionofthePU/PAAconstitutivemodel Thelargedeformationstress–strainbehaviorofthepolymernanocompositeshowsthefollowingresponse: 1. Non-linearlargestrainvisco-plasticbehavior. 2. Strainratedependencewhichislowbutispresent. 3. Highplasticstrainsafterunloading. Aphenomenologicalvisco-plasticconstitutivemodelwasdevelopedthatcapturestheobservedmacroscopicmechanical response of the material. The kinematics of the constitutive model developed for the PU/PAA polymer nanocomposite is basedonthatforthermoplasticpolyurethane(TPU),developedbyQiandBoyce[13,14],aschematicrepresentationofwhich isshowninFig.15.Therearetwobranchesthatareinparallel–anon-linearspringbranchwhichisbasedontheeight-chain Arruda–Boycemodel[15],andtheelasto-visco-plasticcomponent,whichinturnconsistsofalinearelasticspringandavis- co-plasticdashpot.ThemacroscopicdeformationgradientFactingonboththesebranchesisthesameandthetotalCauchy stressTisthesumofthecontributionsfromeachbranch. FN¼FV ¼F ð4Þ T¼TVþTN ð5Þ wherethesuperscriptNreferstothenon-linearhyperelasticspringandVtothevisco-plasticbranchinthemodel. Thehyperelasticrubberyspringcapturestheentropychangeduetotheorientationandstretchingofthemolecularnet- work.Theeight-chainmodeldevelopedbyArrudaandBoyce[15],isusedincomputingthestressesasitcapturestheequi- libriumlargestretchbehavioraccurately.Volumechangesareneglectedinthisbranchbycomputingthestressesbasedon thedeviatoricpartofthemacroscopicdeformationgradientasshownbelow.Thereaderisreferedto[15]formoredetailsof thepresentmodel.TheexpressionfortheCauchystressinthisbranchhastheform: p l ffiNffiffiffi (cid:3)k (cid:4) TN¼3Jr kchainL(cid:2)1 pchffiNaffiiffiffin B0 ð6Þ 3234 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.8. Normalizedfracturecurvesfor(a)purepolyurethaneand(b)PU/PAAandpurepolyurethane. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi (cid:2)k2þ(cid:2)k2þ(cid:2)k2 k ¼ 1 2 3 ð7Þ chain 3 FN¼J(cid:2)1=3FN ð8Þ B¼FNFNT ð9Þ 1 B0¼B(cid:2) trðBÞI ð10Þ 3 3(cid:2)n2 L(cid:2)1ðnÞ(cid:3)n ð11Þ 1(cid:2)n2 wherel =nkH,withnbeingthechaindensity(numberofmolecularchainsperunitreferencevolume)oftheunderlying r macromolecularnetwork,kistheBoltzmann’sconstantandHistheabsolutetemperature.Nisthenumberof‘‘rigidlinks” betweentwocrosslinksandBistheisochoricleftCauchy–Greentensor.k isthestretchoneachchainintheeight-chain chain E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 3235 Fig.9. Samplestrainoftwodotsoneithersideofcracksurface. Fig.10. Comparisonofexperimentalandnumericalcrackpositioncurvesfor5filmPU/PAAstack. networkthatiscomputedbasedonthesquaresoftheprincipalstretchesk ,k andk ,whichareobtainedbythespectral 1 2 3 decompositionoftheleftCauchy–Greenstraintensor. Theelasto-visco-plasticbranchhasamultiplicativesplitofthedeformationgradient,whichisusedincomputingthepart ofthedeformationseenbythelinearelasticspring.Theinitialelasticpartoftheoverallnon-linearmacroscopicresponseof thematerialisaccountedforthroughthestresscontributionfromthelinearspring. FV ¼FVeFVt ð12Þ whereFVeisthedeformationgradientoftheelasticspringandFVtisthedeformationgradientofthevisco-plasticdashpot. Furthermore,thedecompositionofthevelocitygradientL gives V LV ¼F_VFV(cid:2)1 ¼F_VeFVe(cid:2)1þFVeF_VtFVt(cid:2)1FVe(cid:2)1 ð13Þ LVt¼F_VtFVt(cid:2)1 ¼DVtþWVt ð14Þ whereDVtandWVtaretherateofstretchingandthespin,respectively. Withoutlossofgenerality,wetake[16] 3236 E.Khengetal./EngineeringFractureMechanics77(2010)3227–3245 Fig.11. ComparisonofexperimentalandnumericalstraincurveatY=5mmfor5filmPU/PAAstack. Fig.12. ComparisonofexperimentalandnumericalstraincurveatY=7.5mmfor5filmPU/PAAstack. FVe¼VVeRVe ð15Þ 1 (cid:5) (cid:6) TV ¼ Le lnVVe ð16Þ detFVe WVt¼0 ð17Þ where,Leisthefourth-ordertensormodulusofelasticconstants;VVeandRVearetheleftstretchtensorandtherotationten- sor,obtainedfromthepolardecompositionoftheelasticdeformationgradient. Thevisco-plasticstretchrateDVtisconstitutivelyprescribedas c_t DVt¼pffi2ffiffisvTV0 ð18Þ wherec_t denotesthevisco-plasticshearstrainrateands istheequivalentshearstress.Theconstitutiveequationforthe V evolutionofvisco-plasticshearstrainrateisgivenas (cid:7) A(cid:4)s(cid:7) (cid:3)s (cid:4)(cid:8)(cid:8) c_t¼c_ exp (cid:2) 1(cid:2) V ð19Þ 0 kH s inwhichc_ isthepre-exponentialfactorproportionaltotheattemptfrequencyandsistheathermalshearstrength,which 0 representstheresistancetothevisco-plasticsheardeformation.

Description:
The strain resolution of the digital image correlation technique is For each unique pair of speckles, the relative change of distance-horizontal displace- based on that for thermoplastic polyurethane (TPU), developed by Qi and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.