ebook img

Fracture, fatigue, failure and damage evolution. : Volume 7 proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics PDF

123 Pages·2018·8.02 MB·English
by  Beese
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fracture, fatigue, failure and damage evolution. : Volume 7 proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics

Conference Proceedings of the Society for Experimental Mechanics Series Jay Carroll · Shuman Xia · Alison M. Beese Ryan B. Berke · Garrett J. Pataky Editors Fracture, Fatigue, Failure and Damage Evolution, Volume 7 Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor Kristin B.Zimmerman,Ph.D. SocietyforExperimental Mechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Jay Carroll • Shuman Xia (cid:129) Alison M. Beese (cid:129) Ryan B. Berke Garrett J. Pataky Editors Fracture, Fatigue, Failure and Damage Evolution, Volume 7 Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics 123 Editors JayCarroll ShumanXia SandiaNationalLaboratories SchoolofMechanicalEngineering Albuquerque,NM,USA GeorgiaInstituteofTechnology Atlanta,GA,USA AlisonM.Beese PennsylvaniaStateUniversity RyanB.Berke StateCollege,PA,USA DepartmentofMechanical&AerospaceEngineering UtahStateUniversity GarrettJ.Pataky Logan,UT,USA DepartmentofMechanicalEngineering ClemsonUniversity Clemson,SC,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-62830-1 ISBN978-3-319-62831-8 (eBook) DOI10.1007/978-3-319-62831-8 LibraryofCongressControlNumber:2015951232 ©TheSocietyforExperimentalMechanics,Inc.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Fracture, Fatigue, Failure and Damage Evolution represents one of nine volumes of technical papers presented at the 2017 SEM Annual Conference and Exposition on Experimental and Applied Mechanics organized by the Society for ExperimentalMechanicsandheldinIndianapolis,IN,June12–15,2017.Thecompleteproceedingsalsoincludesvolumeson DynamicBehaviorofMaterials;ChallengesinMechanicsofTime-DependentMaterials;AdvancementofOpticalMethods in Experimental Mechanics; Mechanics of Biological Systems, Materials and Other Topics in Experimental and Applied Mechanics;Micro-andNanomechanics;MechanicsofComposite,HybridandMultifunctionalMaterials;ResidualStress, ThermomechanicsandInfraredImaging,HybridTechniquesandInverseProblems;andMechanicsofAdditiveandAdvanced Manufacturing. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin experimentalmechanics,fractureandfatiguebeingoneoftheseareas. Fatigueandfracturearetwoofthemostcriticalconsiderationsinengineeringdesign.Understandingandcharacterizing fatigueandfracturehasremainedasoneoftheprimaryfocusareasofexperimentalmechanicsforseveraldecades.Advances inexperimentaltechniques,suchasdigitalimagecorrelation,acousticemissions,andelectronmicroscopy,haveallowedfor deeper study of phenomena related to fatigue and fracture. This volume contains the results of investigations of several aspects of fatigue and fracture such as microstructural effects, the behavior of interfaces, the behavior of different and/or complex materials such as composites, and environmental and loading effects. The collection of experimental mechanics researchincludedhererepresentsanothersteptowardsolvingthelong-termchallengesassociatedwithfatigueandfracture. Albuquerque,NM,USA JayCarroll Atlanta,GA,USA ShumanXia StateCollege,PA,USA AlisonM.Beese Logan,UT,USA RyanB.Berke Clemson,SC,USA GarrettJ.Pataky v Contents 1 Interface Mechanical Strength and Elastic Constants Calculations via Nano Impact andNanomechanicalRamanSpectroscopy .......................................................................... 1 DevendraVermaandVikasTomar 2 EffectofStrainRateandInterfaceChemistryonFailureinEnergeticMaterials............................... 7 ChandraPrakash,I.EmreGunduz,andVikasTomar 3 CharacterizationofCrackTipPlasticityinIN-617UsingIndentationandNano-MechanicalRaman Spectroscopy ............................................................................................................. 13 YangZhangandVikasTomar 4 TheTwo-WayRelationshipBetweenResidualStressandFatigue/Fracture ..................................... 19 MichaelB.Prime 5 DesigningBrittleFractureSpecimenstoInvestigateEnvironmentallyAssistedCrackGrowth ............... 25 SundayAduloju,WenjiaGu,TimothyTruster,JohnEmery,DaveReedy,andScottJ.Grutzik 6 FlexibleEnergyHarvesting/StorageStructuresforFlappingWingAirVehicles................................ 35 AlexHolness,HughA.Bruck,andSatyandraK.Gupta 7 TheInfluenceofFormulationVariationandThermalBoundaryConditionsontheNear-Resonant ThermomechanicsofMockExplosives................................................................................ 47 AllisonR.Range,NicoleR.McMindes,JaylonB.Tucker,andJeffreyF.Rhoads 8 DetectingFatigueCrackClosureandCrackGrowthDelaysAfteranOverloadUsingDICMeasurements. 57 G.L.G.Gonzáles,J.A.O.González,J.T.P.Castro,andJ.L.F.Freire 9 In-SituObservationofDamageEvolutioninQuasi-IsotropicCFRPLaminates ................................ 67 AddisTessema,SurajRavindran,AbigailWohlford,andAddisKidane 10 Contamination-Induced Degradation/Enhancement of Interfacial Toughness and Strength inPolymer-MatrixCompositeInterfaces............................................................................. 73 DenizhanYavas,XuShang,andAshrafF.Bastawros 11 DirectandSimultaneousExtractionofMixed-ModeTraction-SeparationRelations........................... 79 ChenglinWu,RuiHuang,andKennethM.Liechti 12 DamageEvolutionin304LStainlessSteelPartialPenetrationLaserWelds ..................................... 85 SharlotteKramer,AmandaJones,JohnEmery,andKyleKarlson 13 Cross-AxisCouplingandPhaseAngleEffectsDuetoMultiaxialVibration...................................... 95 EdHabtour,AbhijitDasgupta,andSabrinaVantadori 14 BehaviorofSteel-ConcreteCompositeBeamsUnderFatigueLoads.............................................. 99 AymanEl-ZohairyandHaniSalim 15 StudyingtheFractureofTropicalWoodSpecieswiththeGridMethod.......................................... 111 B.Odounga,R.MoutouPitti,E.Toussaint,andM.Grédiac vii viii Contents 16 GeneralizationofIntegralParameterstoFatigueLoadinginRoomTemperature.............................. 115 RostandMoutouPitti,HassenRiahi,andMulugetaA.Haile 17 FractureBehaviorofUnidirectionalCompositesAnalyzedbyAcousticEmissionsTechnique ................ 121 C.BarileandC.Casavola Chapter 1 Interface Mechanical Strength and Elastic Constants Calculations via Nano Impact and Nanomechanical Raman Spectroscopy DevendraVermaandVikasTomar Abstract Interfacesareubiquitousinimportantnaturalandmanmadematerials.Researchevidencehasshownthatinterface chemistry,structure,andthicknesstogetherstronglyinfluencematerialmicrostructureandmechanicalproperties.Thefocus of the present work is on presenting an experiment based theoretic advancement to predict thickness dependent elastic propertiesofmaterialsinterfacesbytreatingtheinterfacesandtheareaaroundtheminamaterialasanelasticcontinuum.The experimentsarebasedonthenanomechanicalRamanspectroscopy(NMRS)developedbyauthorsearlierwithacapabilityto simultaneouslymeasurestresscomponentsinorthogonaldirectionsduringanin-situnanomechanicalloading.Ananalytical modelisdevelopedbasedonboundaryconditionsofinterfacetopredictthicknessdependentinterfaceelasticconstants.The interfaceelasticconstantsarecomparedwiththerelationsprovidedinliterature. Keywords NanomechanicalRamanspectroscopy (cid:129) In-situinterfacedeformation (cid:129) In-situnanomechanicalmeasurements (cid:129) Interfacethickness (cid:129) Interfaceelasticconstants ThefirstevermentionofinterfacesisintheworkofGibbs[1]whereheformulatedthermodynamicfoundationsofinterface excess energy. Gibbs definition of interfaces was a zero thickness mathematical entity. The focus of the present work is different from interface thermodynamics, interface chemistry, and interface structure characterization work available in literature.Theinterfaceinthisstudyisconsideredtobeoffinitethicknesswithanon-zerovolume.Emphasisisondeducing the influence of interfaces on mechanical deformation using a classical approach that incorporates interface multi-axial properties.ThepresentworkusesananomechanicalRamanspectroscopy(NMRS)[2–7]basedexperimentalframeworkto measuredirectin-situinterfacedeformationproperties. IntheclassicalworkbyDingrevilleandQu[8–10]theinterfacialmismatchstresswasrelatedtothein-planestrainand applied stress in the case of a zero thickness interface. These formulations provide a way to calculate interfacial elastic properties based on the contribution of interfacial coherent surface stress, incoherent surface stress and transverse excess strain. The role of transverse direction properties of interfaces is accounted for mathematically. In an another formation, the interface is explicitly considered as a finite thickness entity to calculate the interface elastic constants in the case of heterogeneous thin interfaces by Ustinov et al. [11] showing the interface stiffness dependence on their thickness. The presentworkfocusesonusingNMRSbaseddirectobservationsofmultiaxialinterfacedeformationtodevelopatheoretical frameworkforpredictinginterfaceelasticconstantsasafunctionofinterfacethickness. Interfacesincompositematerialsareconsideredasamaterialphaseconfinedbetweentwoseparategrainsorphases.In thisexperimentalwork,theinterfaceelasticconstantsaremeasuredinthecaseofanidealizedepoxyinterfacebetweentwo glass plates. Single interface samples of glass and epoxy were prepared with an epoxy interface sandwiched between two glassplates.Thethicknessoftheinterfaceinsampleswasmeasuredwithamicroscopetomakesurethatitwasintheerror marginof10˙0.5(cid:2)m. Considering different stiffness for the interface and the bulk phases, this boundary condition leads to a jump in the stresses.Ithascontinuousstraindistributionforthecomponentinindentationdirectionwhilethestressesperpendicularto theinterfacemustfulfilltheconditionofequilibrium.Tosolvethisproblem,afictitioushomogeneousisotropicelastichalf space is assumed which for a given applied load through the indenter exhibits the same normal surface displacement as the materialwith interface.Figure 1.1shows theschematic of solution procedure for this case.The key assumption of the analyticalapproachpresentedhereisthattheclassicalstrainsolutionandthesolutionforthelayeredhalfspacearesimilar fortheappliedloads.Theassumptionsforthesecomponentsaretherefore: D.Verma(cid:129)V.Tomar((cid:2)) SchoolofAeronauticsandAstronautics,PurdueUniversity,WestLafayette,IN,47907,USA e-mail:[email protected];[email protected] ©TheSocietyforExperimentalMechanics,Inc.2018 1 J.Carrolletal.(eds.),Fracture,Fatigue,FailureandDamageEvolution,Volume7,ConferenceProceedingsoftheSociety forExperimentalMechanicsSeries,DOI10.1007/978-3-319-62831-8_1 2 D.VermaandV.Tomar E =? n =? u,(cid:2),σ 1. Fictitious homogeneous half space 2. Solution from the Literature σ xx ≈ σ zz σ xz (cid:2) ,(cid:2) ,σ (cid:2) ,(cid:2) ,σ zz xz xx zz xz xx 4. Get the stresses for the layered half 3. Some strain and some stress component distributions show a good match. space with using material laws Fig.1.1 Schematicillustrationofthesolutionprocedure (cid:3) (cid:2)(cid:3) ; xx;fict xx;lay (cid:3) (cid:2)(cid:3) ; (1.1) xz;fict xz;lay (cid:3) (cid:2)(cid:3) : xy;fict xy;lay Theremainingstraincomponentsininterfaceplanedirection,andmustfulfilltheconditionsofcompatibilityandstrain jumpscannotoccur. (cid:4) (cid:2)(cid:4) ; yy;fict yy;lay (1.2) (cid:4) (cid:2)(cid:4) : yz;fict yz;lay Due to limitations of the stress measuring technique, it is not possible to obtain a full stress tensor for the interface in thecurrentindentationsetup.Nevertheless,anequivalentstresscanbeobtained,thereforethecalculatedstresstensorsare transferredtoanequivalentstressby: q (cid:2) (cid:3) (cid:2) (cid:3) (cid:3) D (cid:3)2 C(cid:3)2 C(cid:3)2 (cid:3) (cid:3) (cid:3) C(cid:3) (cid:3) C(cid:3) (cid:3) C3 (cid:3)2 C(cid:3)2 C(cid:3)2 : (1.3) v xx yy zz xx yy yy zz xx zz xy yz xz Here,(cid:3) isthevonMisesequivalentstress.Theflatpunchcorrectionswerethenappliedinthemodel.Aflatendedanda v sphericalindenterproducedifferentloaddistributionsonthesurfaceofthesample. To validate the assumptions of the model, an interface FE model and a homogeneous isotropic half space model was simulatedwith10(cid:2)mthickinterfaceinthemiddle.Planestrainloadingboundaryconditionswereappliedandtheloading wasgiveninthedisplacementboundarycondition.Thestrainsweremeasuredatthemaximumdisplacementof500nmthat wasequivalenttotheindentationdepthintheactualexperiments.Thestrainsandstresseswerecomparedforbothmodels. ThestressesshowedthesimilarprofilevalidatingthestressassumptionsgiveninEq.(1.1). Raman spectroscopy is an excellent tool to measure properties such as the crystalline structure, chemical signature without a necessity of sample preparation. The Raman spectroscopy has been used for other material systems such as epoxyinrecentyearstomeasurethecuringstateaswellastheresidualstressesinthesample44.WehaveusedtheRaman spectroscopydevelopedinourlabbyGanandTomartomeasurethestressesintheinterfaceatdifferentappliedloadsduring nanomechanicalloadingtocomparethestressdistribution[3,4].Themechanicalloadwasappliedusingthenanoindentation platform manufactured by Micro Materials Inc., UK, [12, 13] with load range from 0.1 to 500 mN, with the accuracy of 0.01mN.Thenanomechanicalloadingwasperformedusingaflatpunchindenterattachedtothependulum. 1 InterfaceMechanicalStrengthandElasticConstantsCalculationsviaNanoImpactandNanomechanicalRamanSpectroscopy 3 Fig.1.2 (a) Setup of the nanomechanical Raman spectroscopy experiments. (b) Raman spectrum collected from epoxy showing the peak correspondingtoC–Hbond.(c)Ramanshiftversusstresscalibrationcurveforepoxy Fig.1.3 Distributionoftheequivalentstressfortheindentationwithaflatindenterfor20,200,and500mN.Theheightineachmapis80(cid:2)m andwidthis10(cid:2)m The epoxy samples show Raman peaks in a wide range from 560 to 645 nm. The Raman signal at each wavelength dependsonthemassoftheatomsinvolvedandthestrengthofthebondsbetweenthem.Inthecurrentsystemwemeasured thestrongestsignalaround641.1nmasshowninFig.1.2b.Thechangeinshiftwasobtainedbysubtractingtheshiftatthe appliedloadfortheshiftatzeroload.ThecalibrationcurveforshiftversusloadforepoxyisgiveninFig.1.2d.TheRaman shiftversusstresscalibrationcurvewasusedtocalculatethestressmapsontheinterfaces.TheRamanmapsweremeasured at0,6,60,and150MPa.Themeasurementswereperformedwhileholdingtheloadconstant.Thestressdistributionacross interfacesisshowninFig.1.3. The Raman spectroscopy only provides the average stress at the interface but stress tensors in different directions are neededtofullyunderstandthebehaviorofinterfaces.Evenintheexperiments,itisdifficulttomeasurethelateralstresses. Ananalyticalsolutionisthereforedevelopedtocalculatethelateralstressesduringindentationofinterfaces.Inthepresent analyses, the indentations are quasistatic and fully elastic which gives small indentation depths compared to the indenter

Description:
Fracture, Fatigue, Failure and Damage Evolution, Volume 7 of the Proceedings of the 2017 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the seventh volume of nine from the Conference, brings together contributions to this important area of research and engineering.  Ses
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.