Fractional Noether’s theorem 0 in the Riesz-Caputo sense∗ 1 0 2 Gasta˜o S. F. Frederico n [email protected] a Department of Science and Technology J University of Cape Verde 5 2 Praia, Santiago, Cape Verde ] Delfim F. M. Torres† C [email protected] O Department of Mathematics . h University of Aveiro t a 3810-193 Aveiro, Portugal m [ 1 Abstract v 7 WeproveaNoether’stheoremforfractionalvariationalproblemswith 0 Riesz-Caputoderivatives. BothLagrangianandHamiltonianformulations 5 areobtained. Illustrativeexamplesinthefractionalcontextofthecalculus 4 of variations and optimal control are given. . 1 0 Keywords: calculus of variations, optimal control, fractional deriva- 0 tives, invariance, Noether’s theorem, Leitmann’s direct method. 1 : 2000 Mathematics Subject Classification: 49K05, 26A33. v i X r a 1 Introduction Variational symmetries are defined by parameter transformations that keep a problem of the calculus of variations or optimal control invariant [28, 35, 51]. Their importance, as recognized by Noether in 1918, is connected with the existenceofconservationlawsthatcanbeusedtoreducetheorderoftheEuler- Lagrange differential equations [21, 27, 50]. Noether’s symmetry theorem is ∗Accepted(25/Jan/2010) forpublicationinApplied Mathematicsand Computation. †Correspondingauthor. Partiallysupported by the Centre for Research on Optimization and Control (CEOC) of the University of Aveiro, cofinanced by the European Community fundFEDER/POCI2010. 1 nowadays recognized as one of the most beautiful results of the calculus of variations and optimal control [14, 49, 52]. In1967adirectmethodfortheproblemsofthecalculusofvariations,which allowtoobtainabsoluteextremizersdirectly,without usingthe Euler-Lagrange equations,wasintroducedbyGeorgeLeitmann[34,36,37]. Timeasshownthat Leitmann’s method is a general and fruitful principle that can be applied with success to a myriad of different classes of problems [8, 9, 10, 11, 38, 39, 40]. Interestingly, it turns out that Leitmann’s and Noether’s principles are closely connected [48, 53]. Thefractionalcalculusisanareaofcurrentstrongresearchwithmanydiffer- ent andimportantapplications [31, 43, 45, 47]. In the last yearsits importance in the calculus of variations and optimal control has been perceived, and a fractionalvariationaltheory began to be developed by severaldifferent authors [1, 7, 12, 18, 19, 29, 44, 46]. Most part of the results in this direction make useoffractionalderivativesinthesenseofRiemann-Liouville[7,18,23,25,44], FALVA [19, 20, 22], or Caputo [1, 5, 24]. In 2007 generalized Euler-Lagrange fractional equations and transversality conditions were studied for variational problemsdefinedintermsofRieszfractionalderivatives[2]. Inthispaperwede- velopfurtherthetheorybyobtainingafractionalversionofNoether’ssymmetry theorem for variational problems with Riesz-Caputo derivatives (Theorems 24 and 35). Both fractional problems of the calculus of variations and optimal control are considered. We finish this introduction comparing in some details the results here ob- tained with the ones of references [18, 19, 20]. In[18]a(α,β)fractionalderivativeisconsidered,whichinvolvesarightfrac- tional derivative of order α and a left fractional derivative of order β combined using a complex number γ. The (α,β) fractional derivative is useful when one needs to deal with complex valued functions. In our paper we consider real valued functions only. Moreover, we consider left and right derivatives in the sense of Caputo, while the (α,β) derivative in [18] is defined via left and right Riemann-Liouville derivatives. The advantage of using the Riesz symmetrized Caputo fractional derivative instead of the (α,β) derivative in [18] is that Ca- putoderivativesallowustousethestandardboundaryconditionsofthecalculus ofvariations,whichexplainswhytheyaremorepopularinengineerandphysics. Inour paperwe considerproblemsofthe calculus ofvariationsfor functions withoneindependentvariable. Paper[19]initiatesanewareaoffractionalvari- ational calculus by proposing a fractional variational theory involving multiple integrals. Some importantconsequences of such theory in mechanicalproblems involving dissipative systems with infinitely many degrees of freedom are given in[19],butaformaltheoryforthatismissing. Generalizationofourpresentre- sultstomultiplefractionalvariationalintegralsisaninterestingandchallenging openquestion. The recentresults provedin [3] may be useful to that objective. The results of [20] are for fractional Riemann-Liouville cost integrals that depend on a parameter α but not on fractional-order derivatives of order α as we do here: the variational problems of [20] are defined for Lagrangians that dependontheclassicalderivative,whileherewedealwithfractionalderivatives. 2 2 Preliminaries on Fractional Calculus Inthis sectionwe fix notations by collecting the definitions of fractionalderiva- tives in the sense of Riemann-Liouville, Caputo, and Riesz [2, 43, 45, 47]. Definition 1 (Riemann-Liouville fractional integrals). Let f be a continuous functionintheinterval[a,b]. Fort∈[a,b],theleftRiemann-Liouvillefractional integral Iαf(t) and the right Riemann-Liouville fractional integral Iαf(t) of a t t b order α, α>0, are defined by 1 t Iαf(t)= (t−θ)α−1f(θ)dθ, (1) a t Γ(α) Za 1 b Iαf(t)= (θ−t)α−1f(θ)dθ, (2) t b Γ(α) Zt where Γ is the Euler gamma function. Definition 2 (Riesz fractional integral). Let f be a continuous function in the interval [a,b]. For t ∈ [a,b], the Riesz fractional integral RIαf(t) of order α, a b α>0, is defined by 1 b RIαf(t)= |t−θ|α−1f(θ)dθ. (3) a b 2Γ(α) Za Remark 3. From equations (1)–(3) it follows that 1 RIαf(t)= [ Iαf(t)+ Iαf(t)] . (4) a b 2 a t t b Definition 4 (fractional derivative in the sense of Riemann-Liouville). Let f be a continuous function in the interval [a,b]. For t ∈ [a,b], the left Riemann- Liouville fractional derivative Dαf(t) and the right Riemann-Liouville frac- a t tional derivative Dαf(t) of order α are defined by t b Dαf(t)=Dn In−αf(t)= 1 d n t(t−θ)n−α−1f(θ)dθ, (5) a t a t Γ(n−α) dt (cid:18) (cid:19) Za Dαf(t)=(−D)n In−αf(t)= 1 −d n b(θ−t)n−α−1f(θ)dθ, (6) t b t b Γ(n−α) dt (cid:18) (cid:19) Zt where n∈N is such that n−1≤α<n, and D is the usual derivative. Definition 5 (fractional derivative in the sense of Caputo). Let f be a con- tinuous function in [a,b]. For t ∈ [a,b], the left Caputo fractional derivative CDαf(t) and the right Caputo fractional derivative CDαf(t) of order α are a t t b defined in the following way: 1 t d n CDαf(t)= In−αDnf(t)= (t−θ)n−α−1 f(θ)dθ, (7) a t a t Γ(n−α) dθ Za (cid:18) (cid:19) 1 b d n CDαf(t)= In−α(−D)nf(t)= (θ−t)n−α−1 − f(θ)dθ, t b t b Γ(n−α) dθ Zt (cid:18) (cid:19) (8) 3 where n∈N is such that n−1≤α<n. Definition 6 (fractional derivatives in the sense of Riesz and Riesz-Caputo). Letf beacontinuousfunctionin[a,b]. Fort∈[a,b],theRieszfractionalderiva- tive RDαf(t) and the Riesz-Caputo fractional derivative RCDαf(t) of order α a b a b are defined by RDαf(t)=DnRIn−αf(t)= 1 d n b|t−θ|n−α−1f(θ)dθ, (9) a b a t Γ(n−α) dt (cid:18) (cid:19) Za 1 b d n RCDαf(t)=RIn−αDnf(t)= |t−θ|n−α−1 f(θ)dθ, (10) a b a t Γ(n−α) dθ Za (cid:18) (cid:19) where n∈N is such that n−1≤α<n. Remark 7. Using equations (4) and (5)–(10) it follows that 1 RDαf(t)= [ Dαf(t)+(−1)n Dαf(t)] a b 2 a t t b and 1 RCDαf(t)= CDαf(t)+(−1)nCDαf(t) . a b 2 a t t b In the particular case 0<α<1,(cid:2)we have: (cid:3) 1 RDαf(t)= [ Dαf(t)− Dαf(t)] (11) a b 2 a t t b and 1 RCDαf(t)= CDαf(t)− CDαf(t) . (12) a b 2 a t t b (cid:2) (cid:3) Remark 8. If α=1, equalities (5)–(8) give the classical derivatives: d d D1f(t)= CD1f(t)= f(t), D1f(t)= CD1f(t)=− f(t). a t a t dt t b t b dt Substituting these quantities into (11) and (12), we obtain that d RD1f(t)= RCD1f(t)= f(t). a b a b dt 3 Main Results In2007aformulationoftheEuler-Lagrangeequationswasgivenforproblemsof thecalculusofvariationswithfractionalderivativesinthesenseofRiesz-Caputo [2]. Here we prove a fractional version of Noether’s theorem valid along the Riesz-CaputofractionalEuler-Lagrangeextremals[2]. Forthatweintroducean appropriatefractionaloperator that allow us to generalize the classicalconcept of conservation law. Under the extended fractional notion of conservation law we begin by proving in §3.1 a fractional Noether theorem without changing 4 the time variable t, i.e., without transformation of the independent variable (Theorem 21). In §3.2 we proceed with a time-reparameterization to obtain the fractional Noether’s theorem in its general form (Theorem 24). Finally, in §3.3 we consider more general fractional optimal control problems in the sense of Riesz-Caputo, obtaining the corresponding fractional Noether’s theorem in Hamiltonian form (Theorem 35). 3.1 On the Riesz-Caputo conservation of momentum We begin by defining the fractional functional under consideration. Problem 9 (The fractionalproblemofthe calculusofvariationsinthe senseof Riesz-Caputo). The fractional problem of the calculus of variations in the sense of Riesz-Caputo consists to find the stationary functions of the functional b I[q(·)]= L t,q(t),RCDαq(t) dt, (13) a b Za (cid:0) (cid:1) where [a,b] ⊂ R, a < b, 0 < α < 1, and the admissible functions q : t 7→ q(t) andtheLagrangian L:(t,q,v )7→L(t,q,v )areassumedtobefunctionsofclass l l C2: q(·)∈C2([a,b]; Rn); L(·,·,·)∈C2([a,b]×Rn×Rn; R). Along the work, we denote by ∂ L the partial derivative of L with respect i to its i-th argument, i=1,2,3. Remark 10. When α = 1 the functional (13) is reduced to the classical func- tional of the calculus of variations: b I[q(·)]= L(t,q(t),q˙(t))dt. (14) Za The next theorem summarizes the main result of [2]. Theorem11([2]). Ifq(·)isanextremizerof (13),thenitsatisfiesthefollowing fractional Euler-Lagrangeequation in the sense of Riesz-Caputo: ∂ L t,q(t),RCDαq(t) −RDα∂ L t,q(t),RCDαq(t) =0 (15) 2 a b a b 3 a b for all t∈[a,b].(cid:0) (cid:1) (cid:0) (cid:1) Remark 12. The functional (13) involves Riesz-Caputo fractional derivatives only. However, both Riesz-Caputoand Riesz fractional derivatives appear in the fractional Euler-Lagrange equation (15). Remark 13. Let α = 1. Then the fractional Euler-Lagrange equation in the sense of Riesz-Caputo (15) is reduced to the classical Euler-Lagrange equation: d ∂ L(t,q(t),q˙(t))− ∂ L(t,q(t),q˙(t))=0. 2 dt 3 5 Theorem11leadstotheconceptoffractionalextremalinthesenseofRiesz- Caputo. Definition 14 (fractional extremal in the sense of Riesz-Caputo). A function q(·) that is a solution of (15) is said to be a fractional Riesz-Caputo extremal for functional (13). In order to prove a fractional Noether’s theorem we adopt a technique used in[23,30]. Forthat,webeginbyintroducingthenotionofvariationalinvariance and by formulating a necessary condition of invariance without transformation of the independent variable t. Definition 15 (invariance of (13) without transformation of the independent variable). Functional (13) is said to be invariant under an ε-parameter group of infinitesimal transformations q¯(t)=q(t)+εξ(t,q(t))+o(ε) if tb tb L t,q(t),RCDαq(t) dt= L t,q¯(t),RCDαq¯(t) dt (16) a b a b Zta Zta (cid:0) (cid:1) (cid:0) (cid:1) for any subinterval [t ,t ]⊆[a,b]. a b The next theorem establishes a necessary condition of invariance. Theorem16(necessaryconditionofinvariance). Iffunctional (13)isinvariant in the sense of Definition 15, then ∂ L t,q(t),RCDαq(t) ·ξ(t,q(t))+∂ L t,q(t),RCDαq(t) ·RCDαξ(t,q(t))=0. 2 a b 3 a b a b (17) (cid:0) (cid:1) (cid:0) (cid:1) Remark 17. Let α = 1. From (17) we obtain the classical condition of in- variance of the calculus of variations without transformation of the independent variable t (cf., e.g., [41]): ∂ L(t,q,q˙)·ξ(t,q)+∂ L(t,q,q˙)·ξ˙(t,q)=0. 2 3 Proof. Having in mind that condition (16) is valid for any subinterval [t ,t ]⊆ a b [a,b], we can get rid off the integralsigns in (16). Differentiating this condition with respect to ε, then substituting ε = 0, and using the definitions and prop- erties of the fractional derivatives given in Section 2, we arrive to the intended 6 conclusion: 0=∂ L t,q(t),RCDαq(t) ·ξ(t,q) 2 a b +∂ L(cid:0)t,q(t),RCDαq(t)(cid:1)· d 1 b|t−θ|n−α−1 d nq¯(θ)dθ 3 a b dε Γ(n−α) dθ " Za (cid:18) (cid:19) #ε=0 (cid:0) (cid:1) =∂ L t,q,RCDαq ·ξ(t,q) 2 a b +(cid:0)∂ L t,q,RCD(cid:1) αq · d 1 b|t−θ|n−α−1 d nq(θ)dθ 3 a b dε Γ(n−α) dθ " Za (cid:18) (cid:19) (cid:0) (cid:1) ε b d n + |t−θ|n−α−1 ξ(θ,q)dθ Γ(n−α) dθ Za (cid:18) (cid:19) #ε=0 =∂ L t,q,RCDαq ·ξ(t,q) 2 a b +(cid:0)∂ L t,q,RCD(cid:1) αq · 1 b|t−θ|n−α−1 d nξ(θ,q)dθ 3 a b Γ(n−α) dθ Za (cid:18) (cid:19) =∂ L t,q,(cid:0)RCDαq ·ξ((cid:1)t,q)+∂ L t,q,RCDαq ·RCDαξ(t,q). 2 a b 3 a b a b (cid:0) (cid:1) (cid:0) (cid:1) Thefollowingdefinitionisusefulinordertointroduceanappropriateconcept of fractional conserved quantity in the sense of Riesz-Caputo. Definition 18. Given two functions f and g of class C1 in the interval [a,b], we introduce the following operator: Dγ(f,g)=g·RDγf +f ·RCDγg, t a b a b where t∈[a,b] and γ ∈R+. 0 Remark 19. Similar operators were used in [23, Definition 19] but involving Riemann-Liouville fractional derivatives. We note that the new operator Dγ t proposed here involves both Riesz and Riesz-Caputo fractional derivatives. Remark 20. In the classical context one has γ =1 and d D1(f,g)=f′·g+f ·g′ = (f ·g)=D1(g,f) . t dt t Roughlyspeaking,Dγ(f,g)isafractionalversionofthederivativeoftheproduct t off withg. Differentlyfrom theclassical context,inthefractional caseonehas, in general, Dγ(f,g)6=Dγ(g,f). t t WenowprovethefractionalNoether’stheoreminthesenseofRiesz-Caputo without transformation of the independent variable t. Theorem 21 (Noether’s theorem in the sense of Riesz-Caputo without trans- formationoftime). If functional (13) is invariant in the sense of Definition 15, then Dα ∂ L t,q(t),RCDαq(t) ,ξ(t,q(t)) =0 (18) t 3 a b along any fractional Riesz-Caputo extremal q(t), t∈[a,b] (Definition 14). (cid:2) (cid:0) (cid:1) (cid:3) 7 Remark 22. In the particular case when α = 1 we get from the fractional conservation law in the sense of Riesz-Caputo (18) the classical Noether’s con- servation law of momentum (cf., e.g., [30, 41]): d [∂ L(t,q(t),q˙(t))·ξ(t,q(t))]=0 dt 3 along any Euler-Lagrange extremal q(·) of (14). For this reason, we call the fractional law (18) the fractional Riesz-Caputo conservation of momentum. Proof. Using the fractional Euler-Lagrangeequation (15), we have: ∂ L t,q,RCDαq =RDα∂ L t,q,RCDαq . (19) 2 a b a b 3 a b Replacing (19) in the(cid:0)necessary co(cid:1)ndition of inv(cid:0)ariance (17)(cid:1), we get: RDα∂ L t,q,RCDαq ·ξ(t,q)+∂ L t,q,RCDαq ·RCDαξ(t,q)=0. (20) a b 3 a b 3 a b a t By definition(cid:0) of the oper(cid:1)ator Dγ(f,g) it(cid:0)results from(cid:1) (20) that t Dα ∂ L t,q,RCDαq ,ξ(t,q) =0. t 3 a b (cid:2) (cid:0) (cid:1) (cid:3) 3.2 The Noether theorem in the sense of Riesz-Caputo The next definition gives a more general notion of invariance for the integral functional (13). The main result of this section, the Theorem 24, is formulated with the help of this definition. Definition 23 (invariance of (13)). The integral functional (13) is said to be invariant under the one-parameter group of infinitesimal transformations t¯=t+ετ(t,q(t))+o(ε), (q¯(t)=q(t)+εξ(t,q(t))+o(ε), if tb t¯(tb) L t,q(t),RCDαq(t) dt= L t¯,q¯(t¯),RCDαq¯(t¯) dt¯ a b a b Zta Zt¯(ta) (cid:0) (cid:1) (cid:0) (cid:1) for any subinterval [t ,t ]⊆[a,b]. a b Our next theorem gives a generalizationof Noether’s theorem for fractional problems of the calculus of variations in the sense of Riesz-Caputo. Theorem 24 (Noether’s fractional theorem in the sense of Riesz-Caputo). If the integral functional (13) is invariant in the sense of Definition 23, then Dα ∂ L t,q,RCDαq ,ξ(t,q) t 3 a t (cid:2) +D(cid:0)tα L t,q,aRC(cid:1)Dtαq −(cid:3)α∂3L t,q,aRCDtαq ·RaCDbαq,τ(t,q) =0 (21) along any frac(cid:2)tio(cid:0)nal Riesz-Ca(cid:1)puto extr(cid:0)emal q(·). (cid:1) (cid:3) 8 Remark 25. In the particular case α = 1 we obtain from (21) the classical Noether’s conservation law (cf., e.g., [30, 41]): d [∂ L(t,q,q˙)·ξ(t,q)+(L(t,q,q˙)−∂ L(t,q,q˙)·q˙)τ(t,q)]=0 dt 3 3 along any Euler-Lagrange extremal q(·) of (14). Proof. Our proof is an extension of the method used in [30] to prove the classi- cal Noether’s theorem. For that we reparameterize the time (the independent variable t) with a Lipschitzian transformation [a,b]∋t7−→σf(λ)∈[σ ,σ ] a b that satisfies ′ dt(σ) t = =f(λ)=1 if λ=0. (22) σ dσ In this way one reduces (13) to an autonomous integral functional I¯[t(·),q(t(·))]= σbL t(σ),q(t(σ)),RCDα q(t(σ)) t′ dσ, (23) σa σb σ Zσa (cid:0) (cid:1) wheret(σ )=aandt(σ )=b. Usingthedefinitionsandpropertiesoffractional a b derivatives given in Section 2, we get successively that RCDα q(t(σ))= 1 f(bλ) |σf(λ)−θ|n−α−1 d nq θf−1(λ) dθ σa σb Γ(n−α) a dθ(σ) Zf(λ) (cid:18) (cid:19) (cid:0) (cid:1) = (t′σ)−α (t′σb)2 |σ−s|n−α−1 d nq(s)ds Γ(n−α) ds Z(t′σa)2 (cid:18) (cid:19) =(t′ )−α RCDαq(σ) χ= a , ω = b . σ χ ω (t′ )2 (t′ )2 (cid:18) σ σ (cid:19) We then have I¯[t(·),q(t(·))]= σbL t(σ),q(t(σ)),(t′ )−α RCDαq(σ)q(σ) t′ dσ σ χ ω σ Zσa (cid:16) (cid:17) =. σbL¯ t(σ),q(t(σ)),t′ , RCDαq(σ) dσ f σ χ ω Zσa (cid:16) (cid:17) b = L t,q(t),RCDαq(t) dt a b Za =I[q(·)](cid:0). (cid:1) Ifthe integralfunctional(13)is invariantin the sense ofDefinition 23, then the integralfunctional(23)isinvariantinthe senseofDefinition15. Itfollowsfrom Theorem 21 that ∂ Dα ∂ L¯ ,ξ +Dα L¯ ,τ =0 (24) t 4 f t ∂t′ f (cid:20) σ (cid:21) (cid:2) (cid:3) 9 is a fractional conserved law in the sense of Riesz-Caputo. For λ = 0 the condition (22) allows us to write that RCDαq(σ)=RC Dαq(t), χ ω a b and therefore we get that ∂ L¯ =∂ L (25) 4 f 3 and ∂ L¯ =∂ L¯ · ∂ (t′σ)−α ω|σ−s|n−α−1 d nq(s)ds t′ +L ∂t′ f 4 f ∂t′ Γ(n−α) ds σ σ σ " Zχ (cid:18) (cid:19) # =∂ L¯ · −α(t′σ)−α−1 ω|σ−s|n−α−1 d nq(s)ds t′ +L (26) 4 f Γ(n−α) ds σ " Zχ (cid:18) (cid:19) # =−α∂ L·RCDαq+L. 3 a b Substituting the quantities (25) and (26) into (24), we obtain the fractional conservation law in the sense of Riesz-Caputo (21). 3.3 Optimal control of Riesz-Caputo fractional systems We now adopt the Hamiltonian formalism in order to generalize the Noether type results found in [14, 49] for the more generalcontext of fractional optimal control in the sense of Riesz-Caputo. For this, we make use of our Noether’s Theorem 24 and the standard Lagrange multiplier technique (cf. [14]). The fractional optimal control problem in the sense of Riesz-Caputo is introduced, without loss of generality, in Lagrange form: b I[q(·),u(·)]= L(t,q(t),u(t))dt−→min, (27) Za subject to the fractional differential system RCDαq(t)=ϕ(t,q(t),u(t)) (28) a a and initial condition q(a)=q . (29) a The Lagrangian L : [a,b]×Rn ×Rm → R and the fractional velocity vector ϕ:[a,b]×Rn×Rm →RnareassumedtobefunctionsofclassC1 withrespectto alltheir arguments. We alsoassume,withoutlossofgenerality,that0<α≤1. Inconformitywiththecalculusofvariations,weareconsideringthatthecontrol functions u(·) take values on an open set of Rm. Definition 26. The fractional differential system (28) is said to be a fractional control system in the sense of Riesz-Caputo. 10