ebook img

Fractional Diffusion Equations and Anomalous Diffusion PDF

360 Pages·2018·21.876 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fractional Diffusion Equations and Anomalous Diffusion

FRACTIONAL DIFFUSION EQUATIONS AND ANOMALOUS DIFFUSION Anomalousdiffusionhasbeendetectedinawidevarietyofscenarios,fromfractal media,systemswithmemory,transportprocessesinporousmediatofluctuationsof financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusionandcoversarichclassofproblemsinwhichsurfaceeffectsareimportant, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry, and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equa- tions, this self-contained text presents the possibility of using fractional diffusion equationswithanomalousdiffusionphenomenatoproposepowerfulmathematical modelsforalargevarietyoffundamentalandpracticalproblemsinafast-growing fieldofresearch. luiz roberto evangelista is Professor of Theoretical Physics at the UniversityofMaringa´ (UEM),Brazil.Hisresearchinterestslieincomplexfluids, complex systems, and history of physics, and include mathematical physics of liquidcrystals,diffusionproblems,andadsorption-desorptionphenomena. ervin kaminski lenzi is Associate Professor at the University of Ponta Grossa(UEPG),Brazil.Hisresearchinterestsareincomplexsystemsandstochas- tic processes, and include anomalous diffusion processes, usual and fractional diffusion equations, and modern boundary value problems with applications in liquid-crystallinesystemsandimpedancespectroscopy. FRACTIONAL DIFFUSION EQUATIONS AND ANOMALOUS DIFFUSION LUIZ ROBERTO EVANGELISTA UniversityofMaringa´(UEM) ERVIN KAMINSKI LENZI UniversityofPontaGrossa(UEPG) UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107143555 DOI:10.1017/9781316534649 ©LuizRobertoEvangelistaandErvinKaminskiLenzi2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedKingdombyClays,StIvesplc LibraryofCongressCataloging-in-PublicationData Names:Evangelista,L.R.,author.|Lenzi,ErvinKaminski,1975-author. Title:Fractionaldiffusionequationsandanomalousdiffusion/LuizRoberto Evangelista,UniversidadeEstadualdeMaringa´,Brazil;ErvinKaminski Lenzi,UniversidadeEstadualdePontaGrossa. Description:Cambridge:CambridgeUniversityPress,[2018] Identifiers:LCCN2017035420|ISBN9781107143555(hardback:alk.paper) Subjects:LCSH:Differentialequations,Partial.|Fractionalcalculus.|Diffusion. Classification:LCCQA377.E94482017|DDC515/.83–dc23LCrecord availableathttps://lccn.loc.gov/2017035420 ISBN978-1-107-14355-5Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. ToLucasEvangelistaGomes, whohasjustarrivedamongus L.R.E. ToAliceandPedro,withlove E.K.L. Setuse’or,lettore,acrederlento cio`ch’iodiro`,nonsara`maraviglia, che´ioche’lvidi,apenailmiconsento. [Ifthouart,Reader,slownowtobelieve WhatIshallsay,itwillnomarvelbe, ForIwhosawithardlycanadmitit.] (Dante,InfernoXXV,46–48) Contents Preface pageix 1 MathematicalPreliminaries 1 1.1 IntegralTransforms 1 1.2 SpecialFunctionsofFractionalCalculus 17 1.3 IntegralTransformsofSpecialFunctions 43 2 ASurveyofFractionalCalculus 46 2.1 TheOriginsofFractionalCalculus 46 2.2 TheGru¨nwald–LetnikovOperator 57 2.3 TheCaputoOperator 61 2.4 TheRiesz–WeylOperator 62 2.5 IntegralTransformsofFractionalOperators 63 2.6 AGeneralisedFourierTransform 68 3 FromNormaltoAnomalousDiffusion 71 3.1 HistoricalPerspectivesonDiffusionProblems 71 3.2 Continuous-TimeRandomWalk 90 3.3 DiffusionEquation 95 4 FractionalDiffusionEquations 101 4.1 FractionalTimeDerivative:SimpleSituations 101 4.2 FractionalSpatialDerivative:SimpleSituations 111 4.3 SorptionandDesorptionProcesses 114 4.4 ReactionTerms 124 4.5 ReactionandCTRWFormalism 134 5 FractionalDiffusionEquations 139 5.1 1Dand2DCases:DifferentDiffusiveRegimes 139 5.2 3DCase:ExternalForceandReactionTerm 145 vii viii Contents 5.3 ReactiononaSolidSurface:AnomalousMassTransfer 151 5.4 HeterogeneousMediaandTransportthroughaMembrane 158 6 FractionalNonlinearDiffusionEquations 169 6.1 NonlinearDiffusionEquations 170 6.2 NonlinearDiffusionEquations:IntermittentMotion 173 6.3 FractionalSpatialDerivatives 182 6.4 d-DimensionalFractionalDiffusionEquations 188 7 AnomalousDiffusion 200 7.1 TheAdsorption–DesorptionProcessinAnisotropicMedia 200 7.2 FractionalDiffusionEquationsinAnisotropicMedia 209 7.3 TheCombModel 220 8 FractionalSchro¨dingerEquations 234 8.1 TheSchro¨dingerEquationandAnomalousBehaviour 234 8.2 Time-DependentSolutions 242 8.3 CTRWandtheFractionalSchro¨dingerEquation 249 8.4 MemoryandNonlocalEffects 254 8.5 NonlocalEffectsontheEnergySpectra 264 9 AnomalousDiffusionandImpedanceSpectroscopy 271 9.1 ImpedanceSpectroscopy:Preliminaries 271 9.2 ThePNPTimeFractionalModel 280 9.3 AnomalousDiffusionandMemoryEffects 286 9.4 AnomalousInterfacialConditions 292 10 ThePoisson–Nernst–PlanckAnomalousModels 306 10.1 PNPAModelsandEquivalentCircuits 306 10.2 PNPAModels:AFramework 313 References 323 Index 341 Preface TheveryirregularstateofmotionobservedbyRobertBrownforsmallpollengrains suspended in water initiated one of the the most fascinating fields of science. The importance of such discovery – the so-called diffusion process – is immeasurable; it has been found in many contexts and is widespread in nature. A characteristic featureofthisrandommotionisthelineargrowthwithtimeexhibitedbythemean square displacement, which is typical of a Markovian process. In contrast with this situation, a large class of systems and processes present a diffusion behaviour characterisedbyanonlineartimedependenceofthesamequantity,thusconstituting whatiscalledanomalousdiffusionbehaviour. Thelastdecadeshavewitnessedanincreasedinterestintheanomalousdiffusion processes that seem to be indeed present in a variety of experimental scenarios in physics, chemistry, biology, and several other branches of engineering; it is a rapidly growing field of research, attracting the attention of the scientific commu- nity.Thishappensfromthetheoreticalside–duetothenewmathematicalproblems evoked–butalsofromthepointofviewofexperimentalorpracticalapplications. Itisnoteworthythatthenumberofstudiesreportingexperimentalproblemsdealing with anomalous diffusion has strongly increased – this attests to the ubiquity of a phenomenoninitiallyconsideredarareevent. The power of the mathematical tools based on fractional calculus, on the other hand, has also attracted the attention of the community working with pure and appliedmathematics.Theassociationofthesetechniqueswiththediffusionalprob- lem represents in practice a new field of research. It was shown in several ways that fractional calculus, if it is not unique, is nevertheless a suitable or even the naturalmathematicalframeworktousetofacethehighcomplexityrepresentedby anomalous diffusion phenomena. One powerful way of using these mathematical tools to analyse diffusion processes leads naturally to the necessity to search for solutionsoffractionallinearandnonlineardiffusionequations. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.