ebook img

Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications PDF

366 Pages·1998·13.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications

Fractional Differential Equations This is Volume 198 in MATHEMATICS IN SCIENCE AND ENGINEERING By lgor Podlubny, Technical University of Kosice, Slovak Republic A list of recent titles in this series appears on page v of this volume. FRACTIONAL DIFFERENTIAL EQUATIONS An Introduction to E'ractiorlal Derivatives, E'ractiorlal Differential Eqnations, to Methods of their Solutiori and some of their Applications Igor Podlubny Trch~iicalU rlivcrsity of ICosicc . Slovak 1tc~pul)lic. ACADEbZIC PltESS San Dlrgo Boston New York Loridor1 Syi111c.y 'lhk\.o 'li~ronto Copyright @ 1999 I)y rZCADESIIC PRESS All H1ghi5 Rrscrvctl No part of this p~il~licat~moayt~ b c, rcprotliiced or trar~sr~tcit~i tI rk arly for111 I)y pllotostat, n~icrofiluio, r ally other means without writttw perlr~ission fro111 tl~cpi il)l~shc~rs ACAIIEhITC I'KESS 523B Strcct Sulto 1900 Sit11 D~rgo.C 'aliforriia !)2101-4.495, USA ht tp://wwur.apnet coin AC'AL)ISllT(: I'RKSS 2 1 28 Oval Roit(i LONI)ON NWI 7DX. IfI< ht t~).//ww~.lll~iikt.lcko/; lp/ A catillog~~rctc~o rtl for 1.11is book is a\railal)lc Li-oitl the I3rit.ist1 Library ISBN 0 -12 S5H810 -2 I'rinied in the LJnited States of America !I!) 00 01 02 03 XIP !) 8 7 8 5 4 3 2 1 Mathematics in Science and Engineering E(litt~t1t) y \Villiarn Y. A111r.s. C;c.orgii~1 11stitu tc, of Tccli~iology IXoc*erlt titles 'r.A. ~ll~~,O\,l'Oll.~C 77'(iI ll,~f,(J7~(L1l,ldl ~z~~(J'T~'~~IJ~'~'/~(/J(L,~~ ;zO~I.S 13.~111P . T<ariwitl, Gener.c~l,izcdk i~nckiorsr: 7'1~i+oaly.n tl Tcchrt ~rluf, Ifarc Iliu~gr~1l).e cisior~ ar~dC 107~1roli rr C:rr~~r.f(Rlif7:.~so ,~i.r.S(:eY S~P~IILS John L. Cast i. Non.li11ec~Sr ;yste.rrr l'l~~oryj Yoshikazli Sitwaragi: IIirt~twkaN i~k~~iuann:d~ l',c 't.s~~z'oIk i~irio. Tl~r:o~ofy Nult i-ol).jr:c:tirw!O ptan~iz(~tio~~ E(lw;irti .J. Ilaug, Ky~~nKg. C lhoi? i111d \r>ldirl~I< oirlkov. Dcsiyr~S errsitl,r!it.?j A7~nlysi.so f S~~./LC~S,!jIsLte~7.n(~L ~ Yaakov Bar-Shnlorl~a lltl .l'lloli~asE . Fort~rl~;irir7~'?.n r:Airt!g (lrrtl Dato Associcltiorr V.13. Kol~r~aiiovskii~ir itlV .H. Nosov: Stahilily of f ~rrc:t,ior~rDrli flt:~r:ntial I$quatio?rs V. Lakshl~~ikant,hilrarili d I). Trigiirnt cb, T1/tr~oro?jj I)zff'err:r~.r.cE:g uc~tior~,~: a4pph~(~tit007 i~~'~l/ .7n,(!~i(AXnJa,ll ysis 13.D. V~i.jal~oviacn: d S.E. Jorlcs. k"~r-ltrtto1r1r,1 AIethods in Norrtorrsr,r?!nti.clc. l)h,crrort~~n,a C. 1Xogc.r~a ritl 1Y.I:. Axnos. Nonlir~c:cirU o/rnrlnry I,~F,kucP robl~rrii~n SC:'I'E~a~rtK(/C Elrgi7r~era~~j W.F. hn~os~ rldCI . I<ogcrs, ~071/171f'(11'E ~IL(I~,XirrO ti~~Ici,A Sp plied Scierlc:as ,losip E. Pccal-ic, Frank pros char^; and Y.L. 'l'ong. Cor~t:~c~I L ~ ~ cI~'(j~,rtoi~TI ~ s . Or.der7rrg~.u nd Stai,7sticol Applir:c~tions E.N. (:hilk\vi~,S t(~bilzt;ya nd Tirr~e-Optrmt~Clo rttrd of /f(!n!$%trirS!jy ste~rzs Viorrl Barl,u, A7~rr,l~j,suis7 ~dC ortbrol of Norllzn.nu,r 17?fi~ritcU a~ncnsionalS ?jstems Yang Iiriarlg. Ilrilny Diflc~u>ntraEl quations: Wzth App1i.cc~tion.si r~P opulo.tiort. D:yr~nmirs K.A. Arncs and B. Straugha~i~l;,' on-,Str~71tlaadn d I.ntpr.operly Poscd Prohlerrrs Z. Gnjic SI.'I'..J. CJ~~resh7i.'1 1,eL ynprrnozi Matrix Eq,rcc~tioni7 l Systc~n Stnhilifyl nrrd C'o71,trol 1). Str;i~ll),. .lltcrx(~ln:eh luthe7llclt.ic.cll.rr~1l 7heo7-9 of Nor~-cq?izlit)l,itP~~l~nr~:n o7nr:na I3.C;. 1';ic.hpatto. Inr:y~c~l~:ftoir(~ l,)sz ~ff~1~71,/2ar(i~d1 17~te!jlnlE ~(~.uut,'lo~r,,s I. Podl~iltliy.I .iadior~,al/ )ijf'~r.e~rtrEalq wc~,tio~~.s To my parents Contents Preface xvii Acknowledgements xxiii 1 Special Functions of the Fractional Calculus 1.1 Ga~rimaF unction . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Definit.i on of the Garri~riaF iinctio~i. . . . . . . . 1.1.2 Sonie Properties of t.l ie Gamn~aF unction . . . . 1.1.3 Lirnit Representation of the G~mrr~Fuan rtior~ . 1.1.4 Beta Fi~nction . . . . . . . . . . . . . . . . . . . 1 . 1 Contour Iritcgral Rrprcsrnt.a tion . . . . . . . . . 1.1.6 Contour Integral Reprtlscntation of l/r(z) . . . 1.2 Mittag-Leffler Functiorl . . . . . . . . . . . . . . . . . . . 1.2.1 Definition anti Relat.i on to Sorrlc: Other Flinctioris 1.2.2 Tile Laplace 'hansforrri of thc hfittag-Lrfflcr Funct.i on in Two Par;imr:tcrs . . . . . . . . . . . 1.2.3 Dcrivativcts of the klittag-I, effler Function . . . . 1.2.4 Differoritial Equations for ttlt: hIit.t,ag-lemer Function . . . . . . . . . . . . . . . . . . . . . . 1 2 Summation For~nulas . . . . . . . . . . . . . . . 1.2.6 Integration of the hIit.tag -Lefflr.r Fi~nction. . . . 1.2.7 Asyriiptot ic Expansions . . . . . . . . . . . . . . 1.3 Wright Furictior~. . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Defi~iition. . . . . . . . . . . . . . . . . . . . . . 1.3.2 Integral Representation . . . . . . . . . . . . . . 1.3.3 Relation to Other Furletions . . . . . . . . . . . 2 Fractional Derivatives and Integrals 41 2.1 The Nanir of the G~III'. . . . . . . . . . . . . . . . . . . 41 2.2 Criiriwald Letnikov Fractiorit~IU r~rivi~tivc..~. . . . . . . 43 CONTENTS 2.2.1 Unification of Intt.gt .r.order Derivatives ancl 111tograls . . . . . . . . . . . . . . . . . . . . 43 2.2.2 I~ltcgriilso f Arbitrary Ordcr . . . . . . . . . . . 48 2.2.3 Dcrivativts of Arbitrary Order . . . . . . . . . . 52 2.2.4 Fractio~lalD c.rivativc of (t - a)' . . . . . . . . . 55 2.2.5 Con~posiito rl with 111teger.ortier Derivatives . . . 57 2.2.6 Cor111)osition wit11 Friictior~alD (arivatives . . . . 59 2.3 Ric~~larlrLli ot~villoF ractiollal Drrivatives . . . . . . . . . 62 2 .1 Unifici~tiono f Ir~t(~gc~r-ortDieerr ivatives i ~ lI~~litc griils. . . . . . . . . . . . . . . . . . . . 63 2.3.2 111tt.grals of Arbitriiry 0rtlt.r . . . . . . . . . . . 65 2.3.3 Dt>rivativtso f Ar1)itr;try Order . . . . . . . . . . 68 2.3.4 Fractio11;il Dcrivativc, of (t. - o ) ~. . . . . . . . . 72 2.0.5 (:orrlposition wit11 Integer-order Derivst.i ves . . . 73 2.3.Cj Cor~lpositiorlw ith fiact iorlal Drrivatives . . . . 74 2.3.7 Link to tllc Grii~lwirltl Lt~trlikovA pproach . . . . 75 2.4 SOIIIPO t l~cxrl ir)proac.1 1rls . . . . . . . . . . . . . . . . . . 77 2.3.1 Cap~lto'sF ri1c.t io~tillD crivativcx . . . . . . . . . . 78 2.4.2 C;c>neritlizt~FI ur1c.t ions Al)proilcll . . . . . . . . . 81 2.5 Sc~li1t31i1alt Fract iorla1 Drri\'i~itv cs . . . . . . . . . . . . . 86 2.6 Lvft arltl Right Fractiorlirl Llt~riv~tive.s . . . . . . . . . . 88 2.7 I'ropc'rt itbs of Fr.~ct.i orla1 Dc, rivi~itv cs . . . . . . . . . . . . 90 2.7.1 I, i~it'iirity . . . .. . . . . . . . . . . . . . . . . . . 9 0 ',) . 'i . '2 T'llt Lc,it, 11iz liillc for Frat. tio~lalD (?rivativcs . . . 91 2.7.3 Fractioliill I)c~i\';1tivc1o f' a. (-'o~npositeF r~rictior~. 97 2.7 ..4 Ric~111ii111L1i orlvillt, Frirc.tiorlal Diff(xrcntiation of art Ir~tc~grDalr pcrldil~go r1 a Paranlrter . . . . 98 2.7.5 Bc, haviorlr 11t:iir t11c Lower .l ‘f~r~llirlal. . . . . . . 99 2.7.(; Ut, haviour far fro111 the Lower 'li~rrnirlul . . . . . 101 2.8 Lapl;~cr'I Yi~rlsforr~o~f sF rit~ti011D~1(~ rivati~.t~.s. . . . . 1 03 2.8.1 Basic Facts ~ It Ihcl 1.ilplac.e li':~rlsforni . . . . . . 1 03 2.8.2 L:r~)lii('1~r a11sfor111of ' t lit, 1iit!11itr1111L ioi~ivlk , l7rac.t iorlnl D~ri\.ii~vtt, . . . . . . . . . . . . . . . 10.1 2.8.3 Liil)li~(''tI~'I .~~IISSOoSf ItIlIlr l Caputo 1)crivittivo . . 106 2.8.4 I, al>lt~c.c'I.' rarrsfhrrll of tl~cG~ri il~wiiltlI ,<.t ilikov F~< I(.t 1' 01.1 ill Dclriv;ltiv(s . . . . . . . . . . . . . . . loci 2.d.5 I,al~l.lc~T ra~lsSor~orfl t 11c LIillc~r Ross St~luo~~tFi;rialc .tiol~i~Dlt .rivativr . . . . . . . . . 108 2.9 F'ouri(,r T'r~ulsforl~of~ s1 'r;tctional l)c~riv;~tivr.s . . . . .; 109 2.9.1 Basic Facts 011 the, For~ric>Tr ransfbr~n . . . . . . 1 09 2.9.2 E'ollric~r- I'rii~~hi'oorf~' I~.'rlii c.t i011iil Illtc'g~ilIs . . . . 110 2 Fol~ric>'lr' ri111~1;)1.0111' 1I' ri~~iot1 1li1l )t~riv;itiv(~.s . . 11 1 2' . I0 3lvlli11' li-i~~~sl'oor~f r1l:rs.ic .l io11a1D r>rivativis. . . . . . . . 112 0 1 13;t,i(. F:itc.ts or1 t11cb lli3lliri 'I'ri~risSol-rn. . . . . . . 112 2.10.2 llollir~'l Yii11s!'o1.11o1f t 11i~R i(i11lii111I1. i ol~villt! l:r.i(.t io~i;~11l 1(t 'grill . . . . . . . . . . . . . . . . . 1 15 2.10. ll(.lliri '1Yiuisfor111o f I llc. Ilii~tr~arlrLi ioi~ville l2~il('ito riill Dvrivat ivc. . . . . . . . . . . . . . . . 115 1 - \I( ~llill' ~'r;li~sfoosf~ tll~ii Cill)IItO Friic.tional Dt.rimtivc . . . . . . . . . . . . . . . . 116 2.10.5 hli:lli~iT sil11sfor11o1f t11t' hlillt~I ioss I+ ~. i.Ic ~' orialD t1riv;~tivt~. . . . . . . . . . . . . . . 1 17 3 Existence and Uniqueness Theorems 121 3.. l.i~lt..lr Frac.tioriaL Diff't:ro~~tiaEl i~llatio~.is. . . . . . . . . 122 3.2 E'ril~it o~~Dnilf f(.r c.11ti.11 Eillrwt.io11o f a Gciieral E'clrrr~ . . . 126 3 .3 E:xist.c~ric.c\ ant1 1Jliiquc~rlc.s'I~'h i~orc~rr~ as a hlr?tI~odo f Solrition . . . . . . . . . . . . . . . . . . 1 31 3 ..1 Dcl~ctndt~licocf ;L Soh~tiou01 1 Initial Coi~ditions. . . . . . 133 4 The Laplace Transform Method 137 4.1 Sttintlard I:ractiorti~l Diffcrcntizil Equations . . . . . . . . 138 4.1.1 Ordiiliiry Li~l(!I. iF~~ ll('ti011~1 Diffc~reiltialE qllat.i or~s. . . . . . . . . . . . . . . 138 4 . 2 Partial Li~~t.aFrr ac:t ional I)ifF(.rcnt ial Eqiiat ioris . . . . . . . . . . . . . . . 140 4.2 Srcl11cnti;il Frartion;il Diffrrc. ntinl Equations . . . . . . . 144 4.2.1 O~di~lLi~ir~~yarI : ra(~t.iorial Diff(.rc~rlit.i ~lE qrlat.ions . . . . . . . . . . . . . . . 144 4.2.2 l'artial Liilcar I*'r:utiori;il Diffcrc!iit. ial E;qu;ltioiis . . . . . . . . . . . . . . . 146 5 Ractional Green's Function 149 5.1 Definitiori arid Sonic. Properticls . . . . . . . . . . . . . 1 50 5.1.1 Dcxfinition . . . . . . . . . . . . . . . . . . . . . .1 50 5.12 Pro1,c.rtic.s . . . . . . . . . . . . . . . . . 150 5.2 Ol~c..tc>rlnE qt~aito n . . . . . . . . . . . . . . . . . . . . . 1 53 5.3 'Two-t<>rrEl~q uatior~ . . . . . . . . . . . . . . . . . . . . . 1 54 5.4 Tl~rct..tc.rrli Erlrlation . . . . . . . . . . . . . . . . . . . . 155 5.5 FOIIS(-Y~II I E(ltiiit ioii . . . . . . . . . . . . . . . . . . . . . 1 56

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.