ebook img

Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering PDF

339 Pages·2019·15.096 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering

Studies in Systems, Decision and Control 194 José Francisco Gómez Lizeth Torres Ricardo Fabricio Escobar Editors Fractional Derivatives with Mittag- Leffler Kernel Trends and Applications in Science and Engineering Studies in Systems, Decision and Control Volume 194 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] The series “Studies in Systems, Decision and Control” (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control–quickly, up to date and withahighquality.Theintentistocoverthetheory,applications,andperspectives on the state of the art and future developments relevant to systems, decision making,control,complexprocessesandrelatedareas, asembeddedinthefieldsof engineering,computerscience,physics,economics,socialandlifesciences,aswell astheparadigmsandmethodologiesbehindthem.Theseriescontainsmonographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular valuetoboththecontributorsandthereadershiparetheshortpublicationtimeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/13304 é ó Jos Francisco G mez (cid:129) Lizeth Torres Ricardo Fabricio Escobar (cid:129) Editors Fractional Derivatives fl with Mittag-Lef er Kernel Trends and Applications in Science and Engineering 123 Editors JoséFranciscoGómez LizethTorres CONACYT-Tecnológico Nacionalde CONACYT-Instituto deIngeniería México UniversidadNacionalAutónomadeMéxico CentroNacional deInvestigación y Mexico City,Mexico Desarrollo Tecnológico Cuernavaca, Morelos,Mexico Ricardo Fabricio Escobar Tecnológico NacionaldeMéxico CentroNacional deInvestigación y Desarrollo Tecnológico Cuernavaca, Morelos,Mexico ISSN 2198-4182 ISSN 2198-4190 (electronic) Studies in Systems,DecisionandControl ISBN978-3-030-11661-3 ISBN978-3-030-11662-0 (eBook) https://doi.org/10.1007/978-3-030-11662-0 LibraryofCongressControlNumber:2018967421 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In recent years, fractionalcalculus hasallowed describing several complex problems in the fields of mathematics, physics, biology, and engineering. The complexity oftheseproblemshasledtoresearcherstodevelopmathematicaltheoriestomodelthe complexities of nature taking into account the fractional calculus. The mathematical models are powerful tools used for describing real-world problems; to develop mathematicalmodels,differentialequationsanddifferentialoperatorsarerequired.The differential operators can be local or non-local. The non-local can further be divided into three types: differential operators with a power-law kernel, differential operators withexponentialdecaylaw,andfinally,differentialoperatorswithMittag-Lefflerlaw. The operators with non-singular kernel have the following features: They do not imposeartificialsingularitiesonanymodel,theyhaveatthesametimeMarkovianand non-Markovianproperties,theyareatthesametimepowerlaw,stretchedexponential and Brownian motion, the mean square displacement is a crossover from usual dif- fusion to sub-diffusion, the derivative probability distribution is at the same time Gaussian and non-Gaussian, and it can cross over from Gaussian to non-Gaussian evenwithoutpassingthroughthesteadystate.Itmeansthatthefractionalderivatives with non-singular kernel are at the same time deterministic and stochastic. Theaimofthisbookistopresentnoveldevelopments,trends,andapplicationsof fractional-order derivatives with a non-singular and non-local kernel in the areas of chemistry, mechanics, chaos, epidemiology, fluid mechanics, modeling, and engi- neering.Non-singularandnon-localfractional-orderderivativeshavebeenappliedin the different chapters to describe complex problems. These 18 contributed chapters, which wereput togetherupona rigorousreviewprocess,havebeenwritten byboth young and established researchers, who are specialists in their topic. Cuernavaca, Mexico José Francisco Gómez Mexico City, Mexico Lizeth Torres Cuernavaca, Mexico Ricardo Fabricio Escobar February 2019 v Contents ReproducingKernelMethodforFractionalDerivativewithNon-local and Non-singular Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ali Akgül Necessary and Sufficient Optimality Conditions for Fractional Problems Involving Atangana–Baleanu’s Derivatives. . . . . . . . . . . . . . . 13 G. M. Bahaa and A. Atangana VariableOrderMittag–LefflerFractionalOperatorsonIsolatedTime Scales and Application to the Calculus of Variations . . . . . . . . . . . . . . . 35 Thabet Abdeljawad, Raziye Mert and Delfim F. M. Torres Modeling and Analysis of Fractional Leptospirosis Model Using Atangana–Baleanu Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Saif Ullah and Muhammad Altaf Khan Dual Fractional Analysis of Blood Alcohol Model Via Non-integer Order Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Kashif Ali Abro and J. F. Gómez-Aguilar Parameter Estimation of Fractional Gompertz Model Using Cuckoo Search Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 J. E. Solís-Pérez, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, L. Torres and V. H. Olivares-Peregrino Existence and Uniqueness Results for a Novel Complex Chaotic Fractional Order System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Ilknur Koca and A. Atangana On the Chaotic Pole of Attraction with Nonlocal and Nonsingular Operators in Neurobiology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Emile F. Doungmo Goufo, Abdon Atangana and Melusi Khumalo vii viii Contents Modulating Chaotic Oscillations in Autocatalytic Reaction Networks Using Atangana–Baleanu Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Emile F. Doungmo Goufo and A. Atangana Development and Elaboration of a Compound Structure of Chaotic Attractors with Atangana–Baleanu Operator. . . . . . . . . . . . . . . . . . . . . 159 Emile F. Doungmo Goufo On the Atangana–Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion Equation Formulation. . . . . . . . . . . . . 175 Jordan Hristov Numerical Solutions and Pattern Formation Process in Fractional Diffusion-Like Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Kolade M. Owolabi Heat Transfer Analysis in Ethylene Glycol Based Molybdenum Disulfide Generalized Nanofluid via Atangana–Baleanu Fractional Derivative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Farhad Ali, Muhammad Saqib, Ilyas Khan and Nadeem Ahmad Sheikh Atangana–Baleanu Derivative with Fractional Order Applied to the Gas Dynamics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Sunil Kumar, Amit Kumar, J. J. Nieto and B. Sharma New Direction of Atangana–Baleanu Fractional Derivative with Mittag-Leffler Kernel for Non-Newtonian Channel Flow . . . . . . . . 253 Muhammad Saqib, Ilyas Khan and Sharidan Shafie Exact Solutions for the Liénard Type Model via Fractional Homotopy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 V. F. Morales-Delgado, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez and M. A. Taneco-Hernandez Model of Coupled System of Fractional Reaction-Diffusion Within a New Fractional Derivative Without Singular Kernel. . . . . . . . . . . . . . 293 K.M.Saad,J.F.Gómez-Aguilar,A.AtanganaandR.F.Escobar-Jiménez Upwind-Based Numerical Approximation of a Space-Time Fractional Advection-Dispersion Equation for Groundwater Transport Within Fractured Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 A. Allwright and A. Atangana Reproducing Kernel Method for Fractional Derivative with Non-local and Non-singular Kernel AliAkgül Abstract Atangana and Baleanu introduced a derivative with fractional order to answer some outstanding questions that were posed by many investigators within the field of fractional calculus. Their derivative has a non-singular and nonlocal kernel.Therefore,weapplythereproducingkernelmethodtofractionaldifferential equations with non-local and non-singular kernel. In this work, a new method has been developed for the newly established fractional differentiation. Examples are giventoillustratethenumericaleffectivenessofthereproducingkernelmethodwhen properly applied in the reproducing kernel space. The comparison of approximate andexactsolutionsleavesnodoubtbelievingthatthereproducingkernelmethodis veryefficientandconvergestowardexactsolutionveryrapidly. · · Keywords Fractionalcalculus Atangana–Baleanufractionalderivative Reproducingkernelmethod 1 Introduction CaputoandFabriziointroducedanewoperatorthatwascalledtheCaputo–Fabrizio derivative with fractional order [1, 2]. Due to the novelty of their results, many researchers applied their derivative in few real world problems with great success [3–17]. The novelty in their operator is that the derivative has no singular kernel andfindsapplicationsinmanyproblemsinthefieldofgroundwaterandthermalsci- ence.AtanganawithGoufoenhancedtheversionbasedupontheRiemann–Liouville approach,andtheresultswerealsoacquiredintheworkbyCaputoandFabrizio[18– 21].Apartfromtherealworldapplicationsdonewiththisnovelidea,manytheoretical workswerealsogiven.Acoupleofissueswerepointedoutagainstbothderivatives, includingtheoneinCaputosenseandtheoneinRiemann–Liouvillesense. B A.Akgül( ) SiirtUniversityArtandScienceFacultyDepartmentofMathematics, 56100Siirt,Turkey e-mail:[email protected] ©SpringerNatureSwitzerlandAG2019 1 J.F.Gómezetal.(eds.),FractionalDerivativeswithMittag-LefflerKernel, StudiesinSystems,DecisionandControl194, https://doi.org/10.1007/978-3-030-11662-0_1 2 A.Akgül (1) Thekernelwasnotnonlocal. (2) Theintegralassociateisnotafractionaloperatorbuttheaverageofthefunction anditsintegral. (3) The solution of the following equation dαy =−ay is an exponential equation dxα notanon-localfunction. Itisthereforeconcludedbysomeresearchersthattheoperatorwasnotaderiva- tive with fractional order instead it is a filter with fractional parameter. The frac- tionalparametercanthenbeviewedasfilterregulator.ThewellknownCaputoand Riemann–Liouvillealsohaveabigproblem;theirkernelisnonlocal,butissingular. Thisweaknesshaseffectwhenmodelingrealworldproblems. In order to solve the above problems, Atangana and Baleanu suggested a new operatorwithfractionalorderbasedupontheMittag-Lefflerfunction[22–24].Their operatorshaveallthebenefitsofthatofCaputoandFabrizio;inaddition,thekernel usedisnonlocal.TheoperatorshaveallthebenefitsofthoseofRiemann–Liouville fractional integral of the given function and the function itself. In addition to the abovebenefits,thederivativewasfoundveryusefulinthermalscienceandmaterial sciences[22–24].Thesenewderivativeswithfractionalordersareatthesametime filtersandfractionalderivatives[25]. Numericalmethodshavebeenknownasstrongmathematicaltoolstosolvenon- linearordinarydifferentialequationswithlocalandnon-localoperators.Theyhave been utilized in many models to predict the behavior of the dynamical system for whichthemodelwasenhancedfor.Theyarenormallyutilizedwhenalltheimple- mentedanalyticaltechniquesfail.Duetotheproblemsposedbythefractionalderiva- tive with power-law kernel, a new fractional differentiation was given. The new fractionaldifferentiation,inordertocompletethenewfractionalcalculus,wasuti- lizedtoproducedanewfractionalintegration.Thenewfractionaldifferentiationhas thereforeproducedanewclassoflinearandnon-linearordinarydifferentialequa- tions[26].Wewillapplythereproducingkernelmethodtosolvefractionalordinary differentialequationsthathaveexactsolutions. Whenmodelingphysicalprocesses,clearadvantagesaccrueiftheproblemcanbe formulatedinaHilbertspaceH ofdifferentiablefunctionsonasetE.Animportant classofsuchspaces-thereproducingkernelHilbertspaces-aroseinthetwentieth centuryandhasbecomeincreasinglyprominentinthetwenty-first[27]. Reproducingkernelswereusedforthefirsttimeatthebeginningofthetwentieth century by Zaremba in his work on boundary value problems for harmonic and biharmonic functions [28, 29]. The general theory of reproducing kernel Hilbert spaces was established simultaneously and independently by Aronszajn [30] and Bergman [31] in 1950. The introduction of the reproducing kernel Hilbert spaces Wm[a,b]byCuiandLin[32,33]inthe1980’sledtoanexplosioninapplicationsof 2 reproducingkernelHilbertspacemethodstomanyareasofmathematics:ordinary andpartialdifferentialequations[33–37],fractionaldifferentialequations[38, 39], nonlinearoscillatorswithdiscontinuities[40],nonlineartwo-pointboundaryvalue problems[41–43],differenceequations[44],andintegralequations[33, 45–51].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.