ebook img

Fractional Brownian Motion: Weak and Strong Approximations and Projections PDF

293 Pages·2019·3.628 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fractional Brownian Motion: Weak and Strong Approximations and Projections

Fractional Brownian Motion Series Editor Nikolaos Limnios Fractional Brownian Motion Approximations and Projections Oksana Banna Yuliya Mishura Kostiantyn Ralchenko Sergiy Shklyar First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2019 The rights of Oksana Banna, Yuliya Mishura, Kostiantyn Ralchenko and Sergiy Shklyar to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2019931686 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-260-1 Contents Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter1.ProjectionoffBmontheSpaceofMartingales . . . . . . 1 1.1. fBm and its integral representations . . . . . . . . . . . . . . . . . 2 1.2. Formulation of the main problem . . . . . . . . . . . . . . . . . . 5 1.3. The lower bound for the distance between fBm and Gaussian martingales . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4. The existence of minimizing function for the principal functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5. An example of the principal functional with infinite set of minimizing functions . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6. Uniqueness of the minimizing(cid:2)funct(cid:3)ion for functional with the Molchan kernel and H ∈ 1,1 . . . . . . . . . . . . . . . . . 17 2 1.7. Representation of the minimizing function . . . . . . . . . . . . . 21 1.7.1. Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.2. Main properties of the minimizing function . . . . . . . . . . 28 1.8. Approximation of a discrete-time fBm by martingales . . . . . . 31 1.8.1. Description of the discrete-time model . . . . . . . . . . . . . 31 1.8.2. Iterative minimization of the squared distance using alternating minimization method. . . . . . . . . . . . . . . . . 33 1.8.3. Implementation of the alternating minimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.8.4. Computation of the minimizing function . . . . . . . . . . . . 44 1.9. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 vi FractionalBrownianMotion Chapter2.DistanceBetweenfBmandSubclassesof GaussianMartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1. fBm and Wiener integrals with power functions . . . . . . . . . . 54 2.1.1. fBm and Wiener integrals with constant integrands . . . . . 54 2.1.2. fBm and Wiener integrals involving power integrands with a positive exponent . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.1.3. fBm and integrands a(s) with a(s)s−α non-decreasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1.4. fBm and Gaussian martingales involving power integrands with a negative exponent . . . . . . . . . . . . . . . . . . 67 2.1.5. fBm and the integrands a(s)=a0sα+a1sα+1 . . . . . . . . . 80 2.1.6. fBm and Wiener integrals involving integrands k1+k2sα . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.2. The comparison of distances between fBm and subspaces of Gaussian martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.2.1. Summary of the results concerning the values of the distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.2.2. The comparison of distances . . . . . . . . . . . . . . . . . . . 112 2.2.3. The comparison of upper and lower bounds for the constant cH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2.3. Distance between fBm and class of “similar” functions . . . . . . 118 2.3.1. Lower bounds for the distance . . . . . . . . . . . . . . . . . . 121 2.3.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 2.4. Distance between fBm and Gaussian martingales in the integral norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2.5. Distance between fBm with Mandelbrot–Van Ness kernel and Gaussian martingales . . . . . . . . . . . . . . . . . . . . . 129 2.5.1. Constant function as an integrand . . . . . . . . . . . . . . . . 129 2.5.2. Power function as an integrand. . . . . . . . . . . . . . . . . . 131 2.5.3. Comparison of Molchan and Mandelbrot–Van Ness kernels . . . . . . . . . . . . . . . . . .(cid:2). . .(cid:3). . . . . . . . . . . . 132 2.6. fBm with the Molchan kernel and H ∈ 0, 1 , 2 in relation to Gaussian martingales . . . . . . . . . . . . . . . . . . . . 133 2.7. Distance between the Wiener process and integrals with respect to fBm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 2.7.1. Wiener integration with respect to fBm . . . . . . . . . . . . 138 2.7.2. Wiener process and integrals of power functions with respect to fBm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 2.8. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Contents vii Chapter3.ApproximationoffBmbyVariousClasses ofStochasticProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.1. Approximation of fBm by uniformly convergent series of Lebesgue integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.2. Approximation of fBm by semimartingales . . . . . . . . . . . . . 157 3.2.1. Construction and convergence of approximations . . . . . . . 157 3.2.2. Approximation of an integral with respect to fBm by integrals with respect to semimartingales . . . . . . . . . . . . . 159 3.3. Approximation of fBm by absolutely continuous processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3.4. Approximation of multifractional Brownian motion by absolutely continuous processes . . . . . . . . . . . . . . . . . . . . . . 171 3.4.1. Definition and examples . . . . . . . . . . . . . . . . . . . . . . 171 3.4.2. Hölder continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 173 3.4.3. Construction and convergence of approximations . . . . . . . 175 3.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Appendix1.AuxiliaryResultsfromMathematical,Functional andStochasticAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Appendix2.EvaluationoftheChebyshevCenterofaSet ofPointsintheEuclideanSpace . . . . . . . . . . . . . . . . . . . . . . 205 Appendix3.SimulationoffBm . . . . . . . . . . . . . . . . . . . . . . . 239 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.