ebook img

FPGA-‐based design of a Million point Sparse FFT PDF

35 Pages·2013·0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview FPGA-‐based design of a Million point Sparse FFT

FPGA-­‐based  design  of  a     Million  point  Sparse  FFT   Abhinav  Agarwal   ([email protected])   Computer  Science  and  ArCficial  Intelligence  Laboratory   MassachuseHs  InsCtute  of  Technology Outline   •  IntroducCon     •  MoCvaCon  for  hardware   •  ImplementaCon   –  4  Blocks:  Challenges  and  soluCons   –  Resource  usage  and  performance  constraints   •  Conclusion     1 Collaborators   •  Haitham  Hassanieh   •  Omid  Abari   •  Ezzeldin  Hamed   •  Prof.  Dina  Katabi   •  Prof.  Arvind     2 SFFT  implementaCon   •  Haitham  Hassanieh,  Piotr  Indyk,  Dina  Katabi,  Eric  Price:             Simple  and  Prac.cal  Algorithm  for  Sparse  Fourier  Transform,     Proceedings  of  the  Symposium  on  Discrete  Algorithms,  2012   •  SFFT  already  quite  fast  in  soYware:  20  ms  per  million  pt  FFT     •  Special  purpose  hardware  may  offer  several  more  benefits:   –  power  :  100-­‐1000x  lower  than  soYware   –  cost  and  form  factor:  Enabling  wireless,  mobile  or  air  borne  applicaCons   –  real  .me:  make  it  possible  to  compute  SFFT  in  real  Cme  on  streaming   data     •  Design  metrics:  10x  higher  performance  than  SW  while   consuming  100x  lower  power     3 Rapid  Prototyping  -­‐  FPGA     •  Custom  hardware  –  ASICs   –  High  performance,  low  power   –  Very  high  costs,  fixed  design,  no  revisions   •  FPGA  based  prototyping   –  Lower  performance  &  efficiency  than  ASICs,   •  SCll  beats  SW  handily   –  Very  low  cost   –  Reprogrammable  –  useful  for  evolving  algorithms   –  Parameterized  HW  for  different  applicaCons   4 Goal  &  Challenges   •  Goal:  Perform  million  pt  FFTs  at  ~1  ms  throughput   –  Enable  ~1  GHz  line  rate   •  Use  FPGA  prototyping  for  hardware  design  &  development   –  Target  Pla*orm:  Xilinx  ML605  plagorm  with  Virtex-­‐6  FPGA   –  Power  consumpCon:  1  W     •  Challenges       –  Algorithm  uses  extremely  large  shared  data  structures   –  Requires  a  very  fast  and  relaCvely  large  dense  FFT  (1024  -­‐  4096  pts)   –  Limited  HW  resources  on  FPGA    ⇒  need  modular  dataflow   –  Architectural  exploraCon  needed  as  SFFT  algorithm  relaCvely  new   •  HDL:  Bluespec  System  Verilog   5 Sparse  FFT  algorithm  parameters   •  Sub-­‐linear  algorithm  requires  only  some  of  the  input  data   •  IteraCve  probabilisCc  algorithm   •  Higher  the  no  of  iteraCons  &  greater  the  input  slice  sizes   –  Higher  the  confidence  in  output   –  Higher  the  noise  tolerance   –  Lower  the  error     •  Parameters  under  consideraCon   –  Input  Slice  size:  W    -­‐  storage  requirements   –  No  of  buckets:  B    -­‐  computaConal  requirements   –  No  of  iteraCons:  t    -­‐  performance  &  storage   •  Chosen  Values  for  N  =  220  and  k  =  500   –  W  =  8192,  B  =  4096,  t  =  8   6 Outline   •  IntroducCon   •  MoCvaCon  for  hardware   •  ImplementaCon   –  4  Blocks:  Challenges  and  soluCons   •  Conclusion     7 ImplementaCon  Blocks   Input   Datastream   Generate  Input  Slices  (Sampling  &  permutaCons)   Repeat  iteraCvely  t:  8   Perform  dense  FFT   MulCply  by  filter:  W  =  8192   For  each  slice:  4096  pt   &  Aliasing:  B  =  4096  samples   Find  large  buckets  for  each   Keep  track  of  frequencies  in   iteraCon   large  buckets   Output   Frequencies   Determine  locaCons  &  values  of  largest  frequencies   8 Outline   •  IntroducCon  to  the  algorithm   •  MoCvaCon  for  hardware   •  ImplementaCon   –  Block  1:  Input  Cme  slices   9

Description:
FPGA-‐based design of a. Million point Sparse FFT. Abhinav Agarwal ([email protected]). Computer Science and Ar4ficial Intelligence Laboratory.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.