ebook img

Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis (AMS/MAA Textbooks) PDF

371 Pages·2020·1.904 MB·English
by  Tim Hsu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis (AMS/MAA Textbooks)

AMS / MAA TEXTBOOKS VOL 59 Fourier Series, Fourier Transforms, and Function Spaces A Second Course in Analysis Tim Hsu Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis AMS/MAA TEXTBOOKS VOL 59 Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis Tim Hsu MAATextbooksEditorialBoard StanleyE.Seltzer,Editor MatthiasBeck SuzanneLynneLarson JeffreyL.Stuart DebraSusanCarney MichaelJ.McAsey RonD.Taylor,Jr. HeatherAnnDye VirginiaA.Noonburg ElizabethThoren WilliamRobertGreen ThomasC.Ratliff RuthVanderpool 2010MathematicsSubjectClassification.Primary26-01,42-01. Foradditionalinformationandupdatesonthisbook,visit www.ams.org/bookpages/text-59 LibraryofCongressCataloging-in-PublicationData Names:Hsu,Tim(TimothyMing-Jeng),1969-author. Title:Fourierseries,Fouriertransforms,andfunctionspaces:asecondcourseinanalysis/TimHsu. Description: Providence,RhodeIsland: MAAPress,animprintoftheAmericanMathematicalSociety, [2020]|Series:AMS/MAAtextbooks;volume59|Includesbibliographicalreferencesandindex. Identifiers:LCCN2019040897|ISBN9781470451455(hardback)|ISBN9781470455194(ebook) Subjects: LCSH:Fourieranalysis. |Fourierseries. |Fouriertransformations. |Functionspaces. |AMS: Realfunctions[Seealso54C30]–Instructionalexposition(textbooks,tutorialpapers,etc.).|Harmonic analysisonEuclideanspaces–Instructionalexposition(textbooks,tutorialpapers,etc.). Classification:LCCQA403.5.H7852020|DDC515/.2433–dc23 LCrecordavailableathttps://lccn.loc.gov/2019040897 Copyingandreprinting. Individualreadersofthispublication,andnonprofitlibrariesactingforthem, arepermittedtomakefairuseofthematerial,suchastocopyselectpagesforuseinteachingorresearch. Permissionisgrantedtoquotebriefpassagesfromthispublicationinreviews,providedthecustomaryac- knowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublicationispermit- tedonlyunderlicensefromtheAmericanMathematicalSociety.Requestsforpermissiontoreuseportions ofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. Formoreinformation,please visitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. ©2020bytheauthor.Allrightsreserved. PrintedintheUnitedStatesofAmerica. ⃝1Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 252423222120 Formyparents,YuKaoandMarthaHsu Contents Introduction xi 1 Overture 1 1.1 Mathematicalmotivation: Seriesoffunctions 1 1.2 Physicalmotivation: Acoustics 3 Part1 Complexfunctionsofarealvariable 7 2 Realandcomplexnumbers 9 2.1 Axiomsfortherealnumbers 9 2.2 Complexnumbers 13 2.3 Metricsandmetricspaces 14 2.4 Sequencesin𝐂andothermetricspaces 17 2.5 Completenessinmetricspaces 23 2.6 Thetopologyofmetricspaces 25 3 Complex-valuedcalculus 31 3.1 Continuityandlimits 32 3.2 Differentiation 40 3.3 TheRiemannintegral: Definition 45 3.4 TheRiemannintegral: Properties 52 3.5 TheFundamentalTheoremofCalculus 58 3.6 Otherresultsfromcalculus 62 4 Seriesoffunctions 73 4.1 Infiniteseries 74 4.2 Sequencesandseriesoffunctions 80 4.3 Uniformconvergence 84 4.4 Powerseries 95 4.5 Exponentialandtrigonometricfunctions 96 4.6 Moreaboutexponentialfunctions 101 4.7 TheSchwartzspace 104 4.8 Integrationon𝐑 105 vii viii Contents Part2 FourierseriesandHilbertspaces 113 5 Theideaofafunctionspace 115 5.1 Whichclockkeepsbettertime? 115 5.2 Functionspacesandmetrics 117 5.3 Dotproducts 121 6 Fourierseries 125 6.1 Fourierpolynomials 125 6.2 Fourierseries 127 6.3 RealFourierseries 132 6.4 ConvergenceofFourierseriesofdifferentiablefunctions 136 7 Hilbertspaces 139 7.1 Innerproductspaces 139 7.2 Normedspaces 144 7.3 Orthogonalsetsandbases 150 7.4 TheLebesgueintegral: Measurezero 156 7.5 TheLebesgueintegral: Axioms 162 7.6 Hilbertspaces 171 8 ConvergenceofFourierseries 177 8.1 Fourierseriesin𝐿2(𝑆1) 177 8.2 Convolutions 179 8.3 Dirackernels 180 8.4 ProofoftheInversionTheorem 185 8.5 ApplicationsofFourierseries 189 Part3 Operatorsanddifferentialequations 201 9 PDEsanddiagonalization 203 9.1 SomePDEsfromclassicalphysics 203 9.2 Schrödinger’sequation 208 9.3 Diagonalization 210 10 OperatorsonHilbertspaces 213 10.1 OperatorsonHilbertspaces 213 10.2 Hermitianandpositiveoperators 218 10.3 Eigenvectorsandeigenvalues 222 10.4 Eigenbases 225 11 Eigenbasesanddifferentialequations 229 11.1 Theheatequationonthecircle 230 11.2 Theeigenbasismethod 235 11.3 Thewaveequationonthecircle 237 11.4 Boundaryvalueproblems 244 11.5 Legendrepolynomials 250

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.