ebook img

Fourier Series PDF

26 Pages·2012·0.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fourier Series

Chapter 14 Fourier Series 14.1 GeneralProperties Periodicphenomenainvolvingwaves[∼sin(2πx/λ)asacrudeapproximation towaterwaves,forexample],motors,rotatingmachines(harmonicmotion), or some repetitive pattern of a driving force are described by periodic func- tions. Fourier series are a basic tool for solving ordinary differential equa- tions (ODEs) and partial differential equations (PDEs) with periodic bound- aryconditions.Fourierintegralsfornonperiodicphenomenaaredevelopedin Chapter15.ThecommonnameforthewholefieldisFourieranalysis. AFourierseriesisdefinedasanexpansionofafunctionorrepresentation ofafunctioninaseriesofsinesandcosines,suchas (cid:2)∞ (cid:2)∞ a f(x)= 0 + a cosnx+ b sinnx. (14.1) n n 2 n=1 n=1 The coefficients a ,a , and b are related to the periodic function f(x) by 0 n n definiteintegrals: (cid:3) 1 2π a = f(x)cosnxdx, (14.2) n π 0 (cid:3) 1 2π b = f(x)sinnxdx, n=0,1,2,.... (14.3) n π 0 This result, of course, is subject to the requirement that the integrals exist. Theydoif f(x)ispiecewisecontinuous(orsquareintegrable).Noticethata 0 issingledoutforspecialtreatmentbytheinclusionofthefactor 1.Thisisdone 2 sothatEq.(14.2)willapplytoalla ,n=0aswellasn>0. n The Sturm–Liouville theory of the harmonic oscillator in Example 9.1.4 guaranteesthevalidityofEqs.(14.2)and(14.3)and,byuseoftheorthogonality relations (Example 9.2.1), allows us to compute the expansion coefficients. 663 664 Chapter14 FourierSeries Anotherwayofdescribingwhatwearedoinghereistosaythat f(x)ispart ofaninfinite-dimensionalHilbertspace,withtheorthogonalcosnxandsinnx as the basis. The statement that cosnx and sinnx(n = 0,1,2,...) span this Hilbertspaceisequivalenttosayingthattheyformacompleteset.Finally,the expansioncoefficientsa andb correspondtotheprojectionsof f(x), n n withtheintegralinnerproducts[Eqs.(14.2)and(14.3)]playingtheroleofthe dotproductofSection1.2.ThesepointsareoutlinedinSection9.4. The conditions imposed on f(x) to make Eq. (14.1) valid, and the series convergent,arethat f(x)hasonlyafinitenumberoffinitediscontinuitiesand only a finite number of extreme values, maxima, and minima in the interval [0,2π].1 Functionssatisfyingtheseconditionsarecalledpiecewiseregular. The conditions are known as the Dirichlet conditions. Although there are somefunctionsthatdonotobeytheseDirichletconditions,theymaywellbe labeledpathologicalforpurposesofFourierexpansions.Inthevastmajorityof physicalproblemsinvolvingaFourierseries,theseconditionswillbesatisfied. Inmostphysicalproblemsweshallbeinterestedinfunctionsthataresquare integrable, for which the sines and cosines form a complete orthogonal set. ThisinturnmeansthatEq.(14.1)isvalidinthesenseofconvergenceinthe mean(seeEq.9.63). Completeness The Fourier expansion and the completeness property may be expected be- causethefunctionssinnx,cosnx,einxarealleigenfunctionsofaself-adjoint linearODE, y(cid:6)(cid:6)+n2y=0. (14.4) Weobtainorthogonaleigenfunctionsfordifferentvaluesoftheeigenvaluen fortheinterval[0,2π]tosatisfytheboundaryconditionsintheSturm–Liouville theory(Chapter9).Thedifferenteigenfunctionsforthesameeigenvaluenare orthogonal.Wehave (cid:3) (cid:4) 2π πδ , m=(cid:7) 0, sinmxsinnxdx= mn (14.5) 0, m=0, 0 (cid:3) (cid:4) 2π πδ , m=(cid:7) 0, cosmxcosnxdx= mn (14.6) 2π, m=n=0, 0 (cid:3) 2π sinmxcosnxdx=0, forallintegralmandn. (14.7) 0 Note that any interval x ≤ x ≤ x + 2π will be equally satisfactory. Fre- 0 0 quently,weusex =−π toobtaintheinterval−π ≤ x≤π.Forthecomplex 0 eigenfunctionse±inx,orthogonalityisusuallydefinedintermsofthecomplex 1Theseconditionsaresufficientbutnotnecessary. 14.1 GeneralProperties 665 conjugateofoneofthetwofactors, (cid:3) 2π (eimx)∗einxdx=2πδ . (14.8) mn 0 Thisagreeswiththetreatmentofthesphericalharmonics(Section11.5). EXAMPLE14.1.1 Sawtooth Wave LetusapplyEqs.(14.2)and(14.3)tothesawtoothshape showninFig.14.1toderiveitsFourierseries.Oursawtoothfunctioncanalso beexpressedas (cid:4) x, 0≤ x<π, f(x)= x−2π, π ≤ x≤2π, which is an odd function of the variable x. Hence, we expect a pure sine expansion.Integratingbyparts,weindeedfind (cid:3) (cid:5) (cid:3) an = π1 π xcosnxdx= nxπ sinnx(cid:5)(cid:5)(cid:5)π − n1π π sinnxdx −π −π −π (cid:5) (cid:5)π = 1 cosnx(cid:5)(cid:5) = 1 [(−1)n−(−1)n]=0, n2π n2π −π while (cid:3) (cid:5) (cid:3) bn = π1 π xsinnxdx=−nxπ cosnx(cid:5)(cid:5)(cid:5)π + n1π π sinnxdx −π −π −π (cid:5) (cid:5)π =−2(−1)n− 1 cosnx(cid:5)(cid:5) =−2(−1)n. n n2π n −π ThisestablishestheFourierexpansion (cid:6) (cid:7) sin2x sin3x sinnx f(x)=2 sinx− + −···+(−1)n+1 +··· 2 3 n (cid:2)∞ sinnx =2 (−1)n+1 = x, −π < x<π, (14.9) n n=1 Figure14.1 SawtoothWave y p 0 x –2p –p p 2p –p 666 Chapter14 FourierSeries which converges only conditionally, not absolutely, because of the disconti- nuity of f(x) at x = ±π. It makes no difference whether a discontinuity is intheinterioroftheexpansionintervaloratitsends:Itwillgiverisetocon- ditional convergence of the Fourier series. In terms of physical applications withx=ωafrequency,conditionalconvergencemeansthatoursquarewave isdominatedbyhigh-frequencycomponents. (cid:2) BehaviorofDiscontinuities The behavior at x = nπ is an example of a general rule that at a finite dis- continuitytheseriesconvergestothearithmeticmean.Foradiscontinuityat x= x theseriesyields 0 1 f(x )= [f(x +0)+ f(x −0)], (14.10) 0 0 0 2 wherethearithmeticmeanoftherightandleftapproachestox= x .Ageneral 0 proofusingpartialsumsisgivenbyJeffreysandbyCarslaw(seeAdditional Reading). AnideaoftheconvergenceofaFourierseriesandtheerrorinusingonly a finite number of terms in the series may be obtained by considering the expansionofthesawtoothshapeofFig.14.1.Figure14.2shows f(x)for0 ≤ x < π forthesumof4,6,and10termsoftheseries.Threefeaturesdeserve comment: 1. There is a steady increase in the accuracy of the representation as the numberoftermsincludedisincreased. 2. Allthecurvespassthroughthemidpoint f(x)=0atx=π. 3. In the vicinity of x = π there is an overshoot that persists and shows no signofdiminishing.Thisovershoot(andundershoot)iscalledtheGibbs phenomenon and is a typical feature of Fourier series. The inclusion of moretermsdoesnothingtoremovetheovershoot(undershoot)butmerely movesitclosertothepointofdiscontinuity.TheGibbsphenomenonisnot Figure14.2 f(x) Fourier 10 terms 6 Representationof 4 SawtoothWave x p 14.1 GeneralProperties 667 Figure14.3 f(t) FullWaveRectifier wt –2p –p p 2p limitedtoFourierseries.Itoccurswithothereigenfunctionexpansions.For moredetails,seeW.J.Thomson,FourierseriesandtheGibbsphenomenon, Am.J.Phys.60,425(1992). One of the advantages of a Fourier representation over some other representation, such as a Taylor series, is that it can represent a dis- continuous function. An example is the sawtooth wave in the preceding sectionandExample14.1.3.Otherexamplesareconsideredintheexercises. EXAMPLE14.1.2 Full-WaveRectifier ConsiderthecaseofanabsolutelyconvergentFourier seriesrepresentingacontinuousperiodicfunction,displayedinFig.14.3.Let us ask how well the output of a full-wave rectifier approaches pure direct current. Our rectifier may be thought of as having passed the positive peaks ofanincomingsinewaveandinvertingthenegativepeaks.Thisyields f(t)=sinωt, 0<ωt <π, (14.11) f(t)=−sinωt, −π <ωt <0. Since f(t)definedhereiseven,notermsoftheformsinnωtwillappear.Again, fromEqs.(14.2)and(14.3),wehave (cid:3) (cid:3) 1 0 1 π a =− sinωtd(ωt)+ sinωtd(ωt) 0 π π (cid:3) −π 0 2 π 4 = sinωtd(ωt)= , (14.12) π π 0 (cid:3) 2 π a = sinωtcosnωtd(ωt) n π 0 2 2 =− , neven, π n2−1 =0, nodd. (14.13) 668 Chapter14 FourierSeries Figure14.4 f(x) SquareWave h x –3p –2p –p p 2p 3p Note that (0,π) is not an orthogonality interval for both sines and cosines togetherandwedonotgetzeroforevenn.Theresultingseriesis 2 4 (cid:2)∞ cosnωt f(t)= − . (14.14) π π n2−1 n=2,4,6,... Theoriginalfrequencyωhasbeeneliminated.Thelowestfrequencyoscillation is2ω.Thehigh-frequencycomponentsfalloffasn−2,showingthatthefull-wave rectifierdoesafairlygoodjobofapproximatingdirectcurrent.Whetherthis goodapproximationisadequatedependsontheparticularapplication.Ifthe remainingaccomponentsareobjectionable,theymaybefurthersuppressed byappropriatefiltercircuits.Thesetwoexampleshighlighttwofeatureschar- acteristicofFourierexpansions:2 • If f(x)hasdiscontinuities(asinthesawtoothwaveinExample14.1.1),we canexpectthenthcoefficienttobedecreasingasO(1/n).Convergenceis conditionalonly.3 • If f(x)iscontinuous(althoughpossiblywithdiscontinuousderivativesasin thefull-waverectifierofExample14.1.2),wecanexpectthenthcoefficient tobedecreasingas1/n2,thatis,absoluteconvergence. (cid:2) EXAMPLE14.1.3 Square Wave–High Frequencies One application of Fourier series, the analysis of a “square” wave (Fig. 14.4) in terms of its Fourier components, occurs in electronic circuits designed to handle sharply rising pulses. This exampleexplainsthephysicalmeaningofconditionalconvergence.Suppose thatourwaveisdefinedby f(x)=0, −π < x<0, (14.15) f(x)= h, 0< x<π. 2Raisbeek,G.(1955).OrderofmagnitudeofFouriercoefficients.Am.Math.Mon. 62,149–155. 3AtechniqueforimprovingtherateofconvergenceisdevelopedintheexercisesofSection5.9. 14.1 GeneralProperties 669 FromEqs.(14.2)and(14.3)wefind (cid:3) 1 π a = hdt =h, (14.16) 0 π 0 (cid:3) 1 π a = hcosntdt =0, n=1,2,3,..., (14.17) n π 0 (cid:3) 1 π h b = hsinntdt = (1−cosnπ); (14.18) n π nπ 0 2h b = , nodd, (14.19) n nπ b =0, neven. (14.20) n Theresultingseriesis (cid:8) (cid:9) h 2h sinx sin3x sin5x f(x)= + + + +··· . (14.21) 2 π 1 3 5 Except for the first term, which represents an average of f(x) over the in- terval [−π,π], all the cosine terms have vanished. Since f(x)−h/2 is odd, wehaveaFouriersineseries.Althoughonlytheoddtermsinthesineseries occur,theyfallonlyasn−1.Thisconditionalconvergenceislikethatofthe harmonicseries.Physically,thismeansthatoursquarewavecontainsalotof high-frequencycomponents.Iftheelectronicapparatuswillnotpassthese components, our square wave input will emerge more or less rounded off, perhapsasanamorphousblob. (cid:2) BiographicalData Fourier,JeanBaptisteJoseph,Baron. Fourier,aFrenchmathematician, wasbornin1768inAuxerre,France,anddiedinParisin1830.Afterhisgrad- uationfromamilitaryschoolinParis,hebecameaprofessorattheschoolin 1795.In1808,afterhisgreatmathematicaldiscoveriesinvolvingtheseries andintegralsnamedafterhim,hewasmadeabaronbyNapoleon.Earlier, hehadsurvivedRobespierreandtheFrenchRevolution.WhenNapoleonre- turnedtoFrancein1815afterhisabdicationandfirstexiletoElba,Fourier rejoined him and, after Waterloo, fell out of favor for a while. In 1822, his book on the Analytic Theory of Heat appeared and inspired Ohm to new thoughtsontheflowofelectricity. Fourier series are finite or infinite sums of sines and cosines that describe SUMMARY periodic functions that can have discontinuities and thus represent a wider classoffunctionsthanwehaveconsideredsofar.Becausesinnx,cosnxare eigenfunctions of a self-adjoint ODE, the classical harmonic oscillator equa- tion, the Hilbert space properties of Fourier series are consequences of the Sturm–Liouvilletheory. 670 Chapter14 FourierSeries EXERCISES 14.1.1 A function f(x) (quadratically integrable) is to be represented by a finite Fourier series. A convenient measure of the accuracy of the seriesisgivenbytheintegratedsquareofthedeviation (cid:10) (cid:11) (cid:3) 2π a (cid:2)p 2 (cid:10) = f(x)− 0 − (a cosnx+b sinnx) dx. p n n 2 0 n=1 Showthattherequirementthat(cid:10) beminimized,thatis, p ∂(cid:10) ∂(cid:10) p =0, p =0, ∂a ∂b n n foralln,leadstochoosinga andb ,asgiveninEqs.(14.2)and(14.3). n n Note.Yourcoefficientsa andb areindependentof p.Thisindepen- n n denceisaconsequenceoforthogonalityandwouldnotholdforpowers ofx,fittingacurvewithpolynomials. 14.1.2 Intheanalysisofacomplexwaveform(oceantides,earthquakes,mu- sicaltones,etc.)itmightbemoreconvenienttohavetheFourierseries writtenas (cid:2)∞ a f(x)= 0 + α cos(nx−θ ). n n 2 n=1 ShowthatthisisequivalenttoEq.(14.1)with a =α cosθ, α2 =a2 +b2, n n n n n b =α sinθ, tanθ =b /a . n n n n n Note. The coefficients α2 as a function of ndefine what is called the n power spectrum.Theimportanceofα2 liesinitsinvarianceundera n shiftinthephaseθ . n (cid:12) 14.1.3 Assumingthat π [f(x)]2dxisfinite,showthat −π lim a =0, lim b =0. m m m→∞ m→∞ Hint.Integrate[f(x)−s (x)]2,wheres (x)isthenthpartialsum,and n n useBessel’sinequality(Section9.4)(cid:12).Forourfiniteintervaltheassump- t(cid:12)ionthat f(x)issquareintegrable( −ππ|f(x)|2dxisfinite)impliesthat π |f(x)|dxisalsofinite.Theconversedoesnothold. −π 14.1.4 Applythesummationtechniqueofthissectiontoshowthat (cid:13) (cid:2)∞ sinnx 1(π −x), 0< x≤π = 2 n=1 n −12(π +x), −π ≤ x<0 (Fig.14.5). 14.2 AdvantagesandUsesofFourierSeries 671 Figure14.5 f(x) ReverseSawtooth Wave ∞ Σ f(x) = 1 sin nx p n n=1 2 x –p p p 2 14.1.5 Sumthetrigonometricseries (cid:2)∞ sin(2n+1)x , 2n+1 n=0 andshowthatitequals (cid:4) π/4, 0< x<π −π/4, −π < x<0. 14.2 AdvantagesandUsesofFourierSeries PeriodicFunctions Relatedtotheadvantageofdescribingdiscontinuousfunctionsistheuseful- nessofaFourierseriesinrepresentingaperiodicfunction.If f(x)hasaperiod of2π,perhapsitisonlynaturalthatweexpanditinaseriesoffunctionswith period2π,2π/2,2π/3,....Thisguaranteesthatifourperiodic f(x)isrepre- sented over one interval [0,2π] or [−π,π], the representation holds for all finitex. Atthispoint,wemayconvenientlyconsiderthepropertiesofsymmetry. Using the interval [−π,π], sinx is odd and cosx is an even function of x. Hence,byEqs.(14.2)and(14.3),4if f(x)isodd,alla =0, andif f(x)iseven, n 4Withtherangeofintegration−π ≤x≤π. 672 Chapter14 FourierSeries allb =0.Inotherwords, n (cid:2)∞ a f(x)= 0 + a cosnx, f(x)even, (14.22) n 2 n=1 (cid:2)∞ f(x)= b sinnx, f(x)odd. (14.23) n n=1 Frequently,thesepropertiesarehelpfulinexpandingagivenfunction. We have noted that the Fourier series is periodic. This is important in consideringwhetherEq.(14.1)holdsoutsidetheinitialinterval.Supposewe aregivenonlythat f(x)= x, 0≤ x<π (14.24) andareaskedtorepresent f(x)byaseriesexpansion.Letustakethreeofthe infinitenumberofpossibleexpansions: 1. IfweassumeaTaylorexpansion,wehave f(x)= x, (14.25) aone-termseries.This(one-term)seriesisdefinedforallfinitex. 2. UsingtheFouriercosineseries[Eq.(14.22)],wepredictthat f(x)=−x, −π<x≤0, (14.26) f(x)=2π −x, π<x≤2π. 3. Finally,fromtheFouriersineseries[Eq.(14.23)],wehave f(x)= x, −π<x≤0, (14.27) f(x)= x−2π, π<x≤2π. Thesethreepossibilities—Taylorseries,Fouriercosineseries,andFourier sine series—are each perfectly valid in the original interval [0,π]. Outside, however, their behavior is strikingly different (compare Fig. 14.6). Which of the three, then, is correct? This question has no answer, unless we are given more information about f(x). It may be any of the three or none of them. Our Fourier expansions are valid over the basic interval. Unless the function f(x) is known to be periodic, with a period equal to our basic in- terval, or (1/n)th of our basic interval, there is no assurance whatever that therepresentation[Eq.(14.1)]willhaveanymeaningoutsidethebasicinter- val. Clearly, the interval of length 2π, which defines the expansion, makes a realdifferenceforanonperiodicfunctionbecausetheFourierseriesrepeats thepatternofthebasicintervalinadjacentintervals.Thisalsofollowsfrom Fig.14.6. Inadditiontotheadvantagesofrepresentingdiscontinuousandperiodic functions,thereisathirdveryrealadvantageinusingaFourierseries.Suppose thatwearesolvingtheequationofmotionofanoscillatingparticle,subjectto

Description:
Fourier series are a basic tool for solving ordinary differential equa- tions (ODEs) and The common name for the whole field is Fourier analysis. When Napoleon re- turned to France in 1815 after his abdication and first exile to Elba, Fourier rejoined him and, after Waterloo, fell out of favor for
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.