ebook img

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS FOR THE APOSTOL-BERNOULLI ... PDF

16 PagesΒ·2009Β·0.24 MBΒ·English
by Β 
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS FOR THE APOSTOL-BERNOULLI ...

MATHEMATICSOFCOMPUTATION Volume78,Number268,October2009,Pages2193–2208 S0025-5718(09)02230-3 ArticleelectronicallypublishedonJune12,2009 FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS FOR THE APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS QIU-MINGLUO Abstract. We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-EulerpolynomialsusingtheLipschitzsummationformulaandobtain their integral representations. We give some explicit formulas at rational ar- guments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomialsandrelatedknownresults. 1. Introduction Theclassical BernoullipolynomialsandEulerpolynomialsaredefinedbymeans of the following generating functions (see [1, pp. 804-806] or [18, pp. 25-32]) 𝑧𝑒π‘₯𝑧 βˆ‘βˆž 𝑧𝑛 (1.1) = 𝐡 (π‘₯) (βˆ£π‘§βˆ£<2πœ‹) 𝑒𝑧 βˆ’1 𝑛 𝑛! 𝑛=0 and 2𝑒π‘₯𝑧 βˆ‘βˆž 𝑧𝑛 (1.2) = 𝐸 (π‘₯) (βˆ£π‘§βˆ£<πœ‹), 𝑒𝑧+1 𝑛 𝑛! 𝑛=0 ( ) respectively. Obviously, 𝐡 := 𝐡 (0), 𝐸 := 2𝑛𝐸 1 are the Bernoulli numbers 𝑛 𝑛 𝑛 𝑛 2 and Euler numbers respectively. Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol [2, p. 165, Eq. (3.1)] and (more recently) by Srivastava [20, pp. 83-84]. We begin by recalling here Apostol’s definitions as follows: ReceivedbytheeditorJune3,2008and,inrevisedform,September26,2008. 2000 MathematicsSubjectClassification. Primary11B68;Secondary42A16,11M35. Keywordsandphrases. Lipschitzsummationformula,Fourierexpansion,integralrepresenta- tion, Apostol-Bernoulli and Apostol-Euler polynomials and numbers, Bernoulli and Euler poly- nomialsandnumbers,HurwitzZetafunction,Lerch’sfunctionalequation,rationalarguments. Theauthorexpresseshissinceregratitudetotherefereeforvaluablesuggestionsandcomments. The author thanks Professor Chi-Wang Shu who helped with the submission of this manuscript totheWebsubmissionsystemoftheAMS.. The present investigation was supported in part by the PCSIRT Project of the Ministry of Educationof China underGrant#IRT0621,InnovationProgramof Shanghai MunicipalEduca- tion Committee of China under Grant #08ZZ24 and Henan Innovation Project For University ProminentResearchTalents of China underGrant#2007KYCX0021. ⃝c2009AmericanMathematicalSociety Reverts to public domain 28 years from publication 2193 2194 QIU-MINGLUO Definition 1.1 (Apostol[2]; seealsoSrivastava[20]). TheApostol-Bernoullipoly- nomials ℬ (π‘₯;πœ†) in π‘₯ are defined by means of the generating function 𝑛 𝑧𝑒π‘₯𝑧 βˆ‘βˆž 𝑧𝑛 (1.3) = ℬ (π‘₯;πœ†) πœ†π‘’π‘§βˆ’1 𝑛 𝑛! 𝑛=0 (βˆ£π‘§βˆ£<2πœ‹ when πœ†=1; βˆ£π‘§βˆ£<∣logπœ†βˆ£ when πœ†βˆ•=1) with, of course, 𝐡 (π‘₯)=ℬ (π‘₯;1) and ℬ (πœ†):=ℬ (0;πœ†), 𝑛 𝑛 𝑛 𝑛 where ℬ (πœ†) denotes the so-called Apostol-Bernoulli numbers (in fact, it is a func- 𝑛 tion in πœ†). Recently, Luo and Srivastava introduced the Apostol-Euler polynomials as fol- lows: Definition 1.2 (Luo [14]; see also Luo and Srivastava [13]). The Apostol-Euler polynomials β„° (π‘₯;πœ†) in π‘₯ are defined by means of the generating function 𝑛 2𝑒π‘₯𝑧 βˆ‘βˆž 𝑧𝑛 (1.4) = β„° (π‘₯;πœ†) (βˆ£π‘§βˆ£<∣log(βˆ’πœ†)∣), πœ†π‘’π‘§ +1 𝑛 𝑛! 𝑛=0 with, of course, ( ) 1 𝐸 (π‘₯)=β„° (π‘₯;1) and β„° (πœ†):=2𝑛ℰ ;πœ† , 𝑛 𝑛 𝑛 𝑛 2 where β„° (πœ†) denote the so-called Apostol-Euler numbers (in fact, it is a function 𝑛 in πœ†). Remark 1.3. In Definition 1.1 and Definition 1.2, the original constraints βˆ£π‘§+logπœ†βˆ£<2πœ‹ and βˆ£π‘§+logπœ†βˆ£<πœ‹, respectively, should be replaced by the condi- tions βˆ£π‘§βˆ£ < 2πœ‹ when πœ† = 1; βˆ£π‘§βˆ£ < ∣logπœ†βˆ£ when πœ† βˆ•= 1 and βˆ£π‘§βˆ£ < ∣log(βˆ’πœ†)∣ for the referee’sclearanddetailedargumentation. Hence,thecorrespondingconstraintsin References [13], [14], [15] and [20] should also be such. TheApostol-BernoulliandApostol-Eulerpolynomialshavebeeninvestigatedby many people (see, e.g., [2], [4], [5], [9], [13]–[17], [20] and [22]). D.H.Lehmer[11]gaveanewapproachtoBernoullipolynomials,startingfroma function equation (Rabbe’s multiplication theorem). H. Haruki and T. M. Rassias [10]providedthenewintegralrepresentationsfortheBernoulliandEulerpolynomi- alsaswellasusingasimilarfunctionequation. Recently,D.CvijoviΒ΄c[7]reproduced the results of H. Haruki and T. M. Rassias in a different way and showed several different integral representations for the Bernoulli and Euler polynomials. In the present paper, we first investigate Fourier expansions for the Apostol- Bernoulli and Apostol-Euler polynomials based on the Lipschitz summation for- mula, and then provide their integral representations. We obtain some explicit formulas for the Apostol-Bernoulli and Apostol-Euler polynomials at rational ar- guments in terms of the Hurwitz zeta function. We also deduce the corresponding uniform integral representations for the classical Bernoulli and Euler polynomials. We will see that the results of CvijoviΒ΄c or H. Haruki and T. M. Rassias are the corresponding direct consequences of our formulas. Thepaperisorganizedasfollows. Inthefirstsectionwerewritethedefinitionsof Apostol-Bernoulli and Apostol-Euler polynomials. In the second section we derive FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS 2195 FourierexpansionsfortheApostol-BernoulliandApostol-Eulerpolynomials. Inthe thirdsectionweshowtheirintegralrepresentations. Inthefourthsectionweobtain theirexplicitformulasatrationalarguments intermsoftheHurwitzzetafunction. In the fifth section we deduce the corresponding uniform integral representations for the classical Bernoulli and Euler polynomials and related results of CvijoviΒ΄c or H. Haruki and T. M. Rassias. In the sixth section we give some applications and remarks; for example, the classical Euler formula 𝜁(2𝑛) = (βˆ’1)π‘›βˆ’1(2πœ‹)2𝑛𝐡 is 2(2𝑛)! 2𝑛 obtained according to our method. 2. Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials In this section we investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials by applying the Lipschitz summation formula. First we recall the Lipschitz summation formula (see [12] or [19]) as follows: βˆ‘ 𝑒2πœ‹π‘–(𝑛+πœ‡)𝜏 Ξ“(𝛼) βˆ‘ π‘’βˆ’2πœ‹π‘–π‘˜πœ‡ (2.1) = , (𝑛+πœ‡)1βˆ’π›Ό (βˆ’2πœ‹π‘–)𝛼 (𝜏 +π‘˜)𝛼 𝑛+πœ‡>0 π‘˜βˆˆβ„€ whereπœ‡βˆˆβ„€andβ„œ(𝛼)>1orπœ‡βˆˆβ„βˆ–β„€andβ„œ(𝛼)>0; 𝜏 ∈𝐻 isthecomplexupper half plane and Ξ“ denotes the Gamma function. Theorem 2.1. For 𝑛=1, 0<π‘₯<1 and 𝑛>1, 0≀π‘₯≀1, πœ†βˆˆβ„‚βˆ–{0}, we have 𝑛! βˆ‘β€² 𝑒2πœ‹π‘–π‘˜π‘₯ (2.2) ℬ (π‘₯;πœ†)=βˆ’π›Ώ (π‘₯;πœ†)βˆ’ 𝑛 𝑛 πœ†π‘₯ (2πœ‹π‘–π‘˜βˆ’logπœ†)𝑛 [ [( ) ] 𝑛!𝑖𝑛 βˆ‘βˆž exp βˆ’2πœ‹π‘˜π‘₯+ π‘›πœ‹ 𝑖 (2.3) =βˆ’π›Ώ (π‘₯;πœ†)βˆ’ 2 𝑛 πœ†π‘₯ (2πœ‹π‘–π‘˜+logπœ†)𝑛 π‘˜=1 [( ) ]] βˆ‘βˆž exp 2πœ‹π‘˜π‘₯βˆ’ π‘›πœ‹ 𝑖 + 2 , (2πœ‹π‘–π‘˜βˆ’logπœ†)𝑛 π‘˜=1 βˆ‘ β€² where the symbol denotes the standard convention of a sum over the integers that omits 0; 𝛿 (π‘₯;πœ†)=0 or (βˆ’1)𝑛𝑛! according as πœ†=1 or πœ†βˆ•=1, respectively. 𝑛 πœ†π‘₯logπ‘›πœ† Proof. For 0≀π‘₯≀1, by (1.3) and the generalized binomial theorem, we have βˆ‘βˆž (2πœ‹π‘–πœ)π‘˜βˆ’1 𝑒2πœ‹π‘–πœπ‘₯ βˆ‘βˆž (2.4) ℬ (π‘₯;πœ†) = =βˆ’ πœ†π‘˜π‘’2πœ‹π‘–(π‘˜+π‘₯)𝜏 π‘˜ π‘˜! πœ†π‘’2πœ‹π‘–πœ βˆ’1 ( π‘˜=0 π‘˜=0 ) ∣logπœ†βˆ£ logβˆ£πœ†βˆ£ ∣𝜏∣<1 when πœ†=1; ∣𝜏∣< when πœ†βˆ•=1; β„‘πœ > . 2πœ‹ 2πœ‹ We differentiate both sides of (2.4) with respect to the variable 𝜏, by π‘›βˆ’1 times and noting that ℬ (π‘₯;πœ†)=𝛿 (see [13, p. 301]). Then we get 0 1,πœ† βˆ‘βˆž (2πœ‹π‘–)π‘˜βˆ’1πœπ‘˜βˆ’π‘› (βˆ’1)π‘›βˆ’1(π‘›βˆ’1)! (2.5) ℬ (π‘₯;πœ†) + 𝛿 π‘˜ π‘˜(π‘˜βˆ’π‘›)! 2πœ‹π‘–πœπ‘› 1,πœ† π‘˜=𝑛 βˆ‘βˆž =βˆ’(2πœ‹π‘–)π‘›βˆ’1 πœ†π‘˜(π‘˜+π‘₯)π‘›βˆ’1𝑒2πœ‹π‘–(π‘˜+π‘₯)𝜏, π‘˜=0 where 𝛿 is the Kronecker symbol. 1,πœ† 2196 QIU-MINGLUO On the other hand, letting 𝛼=𝑛,πœ‡(cid:13)β†’π‘₯,𝜏 (cid:13)β†’πœ + logπœ† in (2.1), we find that 2πœ‹π‘– βˆ‘ π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ βˆ‘βˆž (2.6) (βˆ’1)𝑛(π‘›βˆ’1)! = πœ†π‘˜+π‘₯(π‘˜+π‘₯)π‘›βˆ’1𝑒2πœ‹π‘–(π‘˜+π‘₯)𝜏. [2πœ‹π‘–(𝜏 +π‘˜)+logπœ†]𝑛 π‘˜βˆˆβ„€ π‘˜=0 Combining (2.5) and (2.6), we obtain βˆ‘βˆž (2πœ‹π‘–)π‘˜βˆ’1πœπ‘˜βˆ’π‘› (βˆ’1)π‘›βˆ’1(π‘›βˆ’1)! πœ†π‘₯ ℬ (π‘₯;πœ†) +πœ†π‘₯ 𝛿 π‘˜ π‘˜(π‘˜βˆ’π‘›)! 2πœ‹π‘–πœπ‘› 1,πœ† π‘˜=𝑛 βˆ‘ π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ =(βˆ’1)π‘›βˆ’1(π‘›βˆ’1)!(2πœ‹π‘–)π‘›βˆ’1 . [2πœ‹π‘–(𝜏 +π‘˜)+logπœ†]𝑛 π‘˜βˆˆβ„€ Separating this π‘˜ =0 term in the above sum on the right side yields that βˆ‘βˆž (2πœ‹π‘–)π‘˜βˆ’1πœπ‘˜βˆ’π‘› (2.7) πœ†π‘₯ ℬ (π‘₯;πœ†) =(βˆ’1)π‘›βˆ’1(π‘›βˆ’1)!(2πœ‹π‘–)π‘›βˆ’1 π‘˜ π‘˜(π‘˜βˆ’π‘›)! π‘˜=𝑛 βˆ‘β€² π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ (βˆ’1)π‘›βˆ’1(π‘›βˆ’1)!(2πœ‹π‘–)π‘›βˆ’1 Γ— + (1βˆ’π›Ώ ). [2πœ‹π‘–(𝜏 +π‘˜)+logπœ†]𝑛 (2πœ‹π‘–πœ +logπœ†)𝑛 1,πœ† Letting 𝜏 β†’0 in (2.7) we are led at once to the assertion (2.2) of Theorem 2.1. Noting that 𝑖𝑛 = π‘’π‘›πœ‹π‘–, (βˆ’1)𝑛 = π‘’βˆ’π‘›πœ‹π‘– and via a simple calculation, then the 2 assertion (2.3) of Theorem 2.1 is a direct consequence of (2.2). This completes our proof. β–‘ In the same manner, we may prove the following. Theorem 2.2. For 𝑛=0, 0<π‘₯<1 and 𝑛>0, 0≀π‘₯ ≀1, πœ†βˆˆ β„‚βˆ–{0,βˆ’1}, we have 2⋅𝑛! βˆ‘ 𝑒(2π‘˜βˆ’1)πœ‹π‘–π‘₯ (2.8) β„° (π‘₯;πœ†)= 𝑛 πœ†π‘₯ [(2π‘˜βˆ’1)πœ‹π‘–βˆ’logπœ†]𝑛+1 π‘˜βˆˆβ„€[ [( ) ] 2⋅𝑛!𝑖𝑛+1 βˆ‘βˆž exp 𝑛+1πœ‹βˆ’(2π‘˜+1)πœ‹π‘₯ 𝑖 (2.9) = 2 πœ†π‘₯ [(2π‘˜+1)πœ‹π‘–+logπœ†]𝑛+1 π‘˜=0 [( ) ]] βˆ‘βˆž exp βˆ’π‘›+1πœ‹+(2π‘˜+1)πœ‹π‘₯ 𝑖 + 2 . [(2π‘˜+1)πœ‹π‘–βˆ’logπœ†]𝑛+1 π‘˜=0 By Theorem 2.1 and Theorem 2.2, we can deduce respectively the Fourier ex- pansions for the classical Bernoulli and Euler polynomials as follows: Corollary 2.3. For 𝑛=1, 0<π‘₯<1 and 𝑛>1, 0≀π‘₯≀1, we have 𝑛! βˆ‘β€² 𝑒2πœ‹π‘–π‘˜π‘₯ (2.10) 𝐡 (π‘₯)=βˆ’ 𝑛 (2πœ‹π‘–)𝑛 π‘˜π‘› ( ) 2⋅𝑛! βˆ‘βˆž cos 2πœ‹π‘˜π‘₯βˆ’ π‘›πœ‹ (2.11) =βˆ’ 2 . (2πœ‹)𝑛 π‘˜π‘› π‘˜=1 FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS 2197 Corollary 2.4. For 𝑛=0, 0<π‘₯<1 and 𝑛>0, 0≀π‘₯≀1, we have 2⋅𝑛! βˆ‘ 𝑒(2π‘˜βˆ’1)πœ‹π‘–π‘₯ (2.12) 𝐸 (π‘₯)= 𝑛 (πœ‹π‘–)𝑛+1 (2π‘˜βˆ’1)𝑛+1 π‘˜βˆˆβ„€ [ ] 4⋅𝑛! βˆ‘βˆž sin (2π‘˜+1)πœ‹π‘₯βˆ’ π‘›πœ‹ (2.13) = 2 . πœ‹π‘›+1 (2π‘˜+1)𝑛+1 π‘˜=0 Remark 2.5. Replacing𝜏 by𝜏+logπœ†+1 in(2.1)andapplyingβ„° (π‘₯;πœ†)= 2 (see, 2πœ‹π‘– 2 0 πœ†+1 for details, [13]–[15]) when we prove the assertion (2.8) of Theorem 2.2. Remark 2.6. We define the 𝑛-th Apostol-Bernoulli function as (2.14) ℬˆ (π‘₯;πœ†):=ℬ (π‘₯;πœ†) (0≀π‘₯<1), ℬˆ (π‘₯+1;πœ†)=πœ†βˆ’1ℬˆ (π‘₯;πœ†), 𝑛 𝑛 𝑛 𝑛 which is also called the quasi-periodicity Apostol-Bernoulli polynomials. For any π‘₯βˆˆβ„,π‘Ÿ βˆˆβ„€, we have (2.15) ℬˆ (π‘₯;πœ†)=πœ†βˆ’[π‘₯]ℬ ({π‘₯};πœ†), ℬˆ (π‘₯+π‘Ÿ;πœ†)=πœ†βˆ’π‘Ÿβ„¬Λ† (π‘₯;πœ†). 𝑛 𝑛 𝑛 𝑛 Herethenotation{π‘₯}denotesthefractionalpartofπ‘₯,andthenotation[π‘₯]denotes the greatest integer not exceeding π‘₯. Clearly, the Apostol-Bernoulli polynomials ℬ (π‘₯;πœ†) (0 ≀ π‘₯ < 1) are the quasi- 𝑛 periodicity functions in π‘₯ with period 1. One of the special cases of the quasi- periodicity Apostol-Bernoulli polynomials is just Carlitz’s periodic Bernoulli func- tion [3, p. 661] for πœ†=1. Remark 2.7. We define the 𝑛-th Apostol-Euler function as (2.16) β„°Λ† (π‘₯;πœ†):=β„° (π‘₯;πœ†) (0≀π‘₯<1), β„°Λ† (π‘₯+1;πœ†)=βˆ’πœ†βˆ’1β„°Λ† (π‘₯;πœ†), 𝑛 𝑛 𝑛 𝑛 which is called the quasi-periodicity Apostol-Euler polynomials. For any π‘₯βˆˆβ„,π‘Ÿ ∈ β„€, we have (2.17) β„°Λ† (π‘₯;πœ†)=(βˆ’1)[π‘₯]πœ†βˆ’[π‘₯]β„° ({π‘₯};πœ†), β„°Λ† (π‘₯+π‘Ÿ;πœ†)=(βˆ’1)π‘Ÿπœ†βˆ’π‘Ÿβ„°Λ† (π‘₯;πœ†). 𝑛 𝑛 𝑛 𝑛 Obviously, the Apostol-Euler polynomials β„° (π‘₯;πœ†) (0 ≀ π‘₯ < 1) are the quasi- 𝑛 periodicity functions in π‘₯ with period 1. One of the special cases of the quasi- periodicity Apostol-Euler polynomials is just Carlitz’s periodic Euler function [3, p. 661] for πœ†=1. 2198 QIU-MINGLUO Remark 2.8. We employ a useful relationship [15, p. 636, Eq. (38)] [ ( )] 2 π‘₯ (2.18) β„° (π‘₯;πœ†)= ℬ (π‘₯;πœ†)βˆ’2𝑛+1ℬ ;πœ†2 𝑛 𝑛+1 𝑛+1 𝑛+1 2 to (2.2) and (2.3), respectively; we can also arrive at the corresponding (2.8) and (2.9). Remark 2.9. Throughout this paper, we take the principal value of the logarithm logπœ†,i.e.,logπœ†=logβˆ£πœ†βˆ£+𝑖argπœ†(βˆ’πœ‹ <argπœ†β‰€πœ‹)whenπœ†βˆ•=1;Wechooselog1=0 when πœ†=1. 3. Integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials InthissectionwegivetheintegralrepresentationsfortheApostol-Bernoulliand Apostol-EulerpolynomialswiththeirFourierexpansions. Forconvenience, wetake πœ†=𝑒2πœ‹π‘–πœ‰ (πœ‰ βˆˆβ„, βˆ£πœ‰βˆ£<1) in this section. Theorem 3.1. For 𝑛=1,2,..., 0β‰€β„œ(π‘₯)≀1, βˆ£πœ‰βˆ£<1, πœ‰ βˆˆβ„, we have (3.1) ℬ (π‘₯;𝑒2πœ‹π‘–πœ‰)=βˆ’Ξ” (π‘₯;πœ‰) 𝑛 𝑛 ∫ ∞ π‘ˆ(𝑛;π‘₯,𝑑)cosh(2πœ‹πœ‰π‘‘)+𝑖𝑉(𝑛;π‘₯,𝑑)sinh(2πœ‹πœ‰π‘‘) βˆ’π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ π‘‘π‘›βˆ’1d𝑑, cosh2πœ‹π‘‘βˆ’cos2πœ‹π‘₯ 0 (βˆ’1)𝑛𝑛! where Ξ” (π‘₯;πœ‰)=0 or according as πœ‰ =0 or πœ‰ βˆ•=0, respectively, and 𝑛 𝑒2πœ‹π‘–π‘₯πœ‰(2πœ‹π‘–πœ‰)𝑛 [ ( ) ( ) ] π‘›πœ‹ π‘›πœ‹ π‘ˆ(𝑛;π‘₯,𝑑)= cos 2πœ‹π‘₯βˆ’ βˆ’cos π‘’βˆ’2πœ‹π‘‘ , 2 2 [ ( ) ( ) ] π‘›πœ‹ π‘›πœ‹ 𝑉(𝑛;π‘₯,𝑑)= sin 2πœ‹π‘₯βˆ’ +sin π‘’βˆ’2πœ‹π‘‘ . 2 2 Proof. Returning to (2.2) and setting πœ†=𝑒2πœ‹π‘–πœ‰, π‘˜ (cid:13)β†’βˆ’π‘˜ yields 𝑛!π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ βˆ‘β€² π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ ℬ (π‘₯;𝑒2πœ‹π‘–πœ‰)=βˆ’Ξ” (π‘₯;πœ‰)βˆ’ . 𝑛 𝑛 (βˆ’2πœ‹π‘–)𝑛 (π‘˜+πœ‰)𝑛 Using the known integral formula ∫ ∞ 𝑛! (3.2) π‘‘π‘›π‘’βˆ’π‘Žπ‘‘d𝑑= (𝑛=0,1,...; β„œ(π‘Ž)>0), π‘Žπ‘›+1 0 ( ) and noting that βˆ’1 𝑛 =π‘’π‘›πœ‹π‘– and (βˆ’1)𝑛 =π‘’βˆ’π‘›πœ‹π‘–, then we have 𝑖 2 FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS 2199 { ∫ π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ βˆ‘βˆž ∞ ℬ (π‘₯;𝑒2πœ‹π‘–πœ‰) =βˆ’Ξ” (π‘₯;πœ‰)βˆ’ π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ π‘‘π‘›βˆ’1π‘’βˆ’(π‘˜+πœ‰)𝑑d𝑑 𝑛 𝑛 (βˆ’2πœ‹π‘–)𝑛 π‘˜=1 0 } ∫ βˆ‘βˆž ∞ +(βˆ’1)𝑛 𝑒2πœ‹π‘–π‘˜π‘₯ π‘‘π‘›βˆ’1π‘’βˆ’(π‘˜βˆ’πœ‰)𝑑d𝑑 { π‘˜=1 0 ∫ π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ ∞ βˆ‘βˆž =βˆ’Ξ” (π‘₯;πœ‰)βˆ’ π‘’βˆ’πœ‰π‘‘π‘‘π‘›βˆ’1 π‘’βˆ’(2πœ‹π‘–π‘₯+𝑑)π‘˜d𝑑 𝑛 (βˆ’2πœ‹π‘–)𝑛 0 π‘˜=1 } ∫ ∞ βˆ‘βˆž +(βˆ’1)𝑛 π‘’πœ‰π‘‘π‘‘π‘›βˆ’1 𝑒(2πœ‹π‘–π‘₯βˆ’π‘‘)π‘˜d𝑑 { 0 π‘˜=1 ∫ π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ ∞ π‘’βˆ’2πœ‹π‘–π‘₯ =βˆ’Ξ” (π‘₯;πœ‰)βˆ’ π‘’βˆ’πœ‰π‘‘π‘‘π‘›βˆ’1d𝑑 𝑛 (βˆ’2πœ‹π‘–)𝑛 π‘’π‘‘βˆ’π‘’βˆ’2πœ‹π‘–π‘₯ 0 } ∫ ∞ 𝑒2πœ‹π‘–π‘₯ +(βˆ’1)𝑛 π‘’πœ‰π‘‘π‘‘π‘›βˆ’1d𝑑 π‘’π‘‘βˆ’π‘’2πœ‹π‘–π‘₯ 0 { ∫ π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ ∞ π‘’π‘›πœ‹π‘–(π‘’βˆ’2πœ‹π‘–π‘₯βˆ’π‘’βˆ’π‘‘) =βˆ’Ξ” (π‘₯;πœ‰)βˆ’ 2 π‘’βˆ’πœ‰π‘‘π‘‘π‘›βˆ’1d𝑑 𝑛 2(2πœ‹)𝑛 coshπ‘‘βˆ’cos2πœ‹π‘₯ 0 } ∫ ∞ π‘’βˆ’π‘›πœ‹π‘–(𝑒2πœ‹π‘–π‘₯βˆ’π‘’βˆ’π‘‘) + 2 π‘’πœ‰π‘‘π‘‘π‘›βˆ’1d𝑑 . coshπ‘‘βˆ’cos2πœ‹π‘₯ 0 It follows that we make the transformation 𝑑 = 2πœ‹π‘’, and after simplification we obtain the desired (3.1) immediately. This completes the proof. β–‘ We can obtain the following integral representations for the Apostol-Euler poly- nomials by a similar method. Theorem 3.2. For 𝑛=1,2,..., 0β‰€β„œ(π‘₯)≀1, βˆ£πœ‰βˆ£< 1, πœ‰ βˆˆβ„, we have 2 (3.3) β„° (π‘₯;𝑒2πœ‹π‘–πœ‰)=2π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ 𝑛 ∫ ∞ 𝑋(𝑛;π‘₯,𝑑)cosh(2πœ‹πœ‰π‘‘)+π‘–π‘Œ(𝑛;π‘₯,𝑑)sinh(2πœ‹πœ‰π‘‘) Γ— 𝑑𝑛d𝑑, cosh2πœ‹π‘‘βˆ’cos2πœ‹π‘₯ 0 where [ ( ) ( )] π‘›πœ‹ π‘›πœ‹ 𝑋(𝑛;π‘₯,𝑑)= π‘’βˆ’πœ‹π‘‘sin πœ‹π‘₯+ +π‘’πœ‹π‘‘sin πœ‹π‘₯βˆ’ , 2 2 [ ( ) ( )] π‘›πœ‹ π‘›πœ‹ π‘Œ(𝑛;π‘₯,𝑑)= π‘’βˆ’πœ‹π‘‘cos πœ‹π‘₯+ βˆ’π‘’πœ‹π‘‘cos πœ‹π‘₯βˆ’ . 2 2 On the other hand, we can also arrive at the following different integral repre- sentations for the Apostol-Bernoulli and Apostol-Euler polynomials. Theorem 3.3. For 𝑛=1,2,..., 0β‰€β„œ(π‘₯)≀1, βˆ£πœ‰βˆ£<1, πœ‰ βˆˆβ„, we have 2π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ (3.4) ℬ (π‘₯;𝑒2πœ‹π‘–πœ‰)=βˆ’Ξ” (π‘₯;πœ‰)+ 𝑛 𝑛 (βˆ’2πœ‹)𝑛 ∫ 1 π‘ˆβ€²(𝑛;π‘₯,𝑑)cosh(πœ‰log𝑑)βˆ’π‘–π‘‰β€²(𝑛;π‘₯,𝑑)sinh(πœ‰log𝑑) Γ— (log𝑑)π‘›βˆ’1d𝑑, 𝑑2βˆ’2𝑑cos2πœ‹π‘₯+1 0 2200 QIU-MINGLUO (βˆ’1)𝑛𝑛! where Ξ” (π‘₯;πœ‰)=0 or according as πœ‰ =0 or πœ‰ βˆ•=0, respectively, and 𝑛 𝑒2πœ‹π‘–π‘₯πœ‰(2πœ‹π‘–πœ‰)𝑛 [ ( ) ( )] π‘›πœ‹ π‘›πœ‹ π‘ˆβ€²(𝑛;π‘₯,𝑑)= cos 2πœ‹π‘₯βˆ’ βˆ’π‘‘cos , 2 2 [ ( ) ( )] π‘›πœ‹ π‘›πœ‹ 𝑉′(𝑛;π‘₯,𝑑)= sin 2πœ‹π‘₯βˆ’ +𝑑sin . 2 2 Proof. First we substitute cosh2πœ‹π‘‘= 𝑒2πœ‹π‘‘+π‘’βˆ’2πœ‹π‘‘ into (3.1). Then we see that 2 (3.5) ℬ (π‘₯;𝑒2πœ‹π‘–πœ‰)=βˆ’Ξ” (π‘₯;πœ‰)βˆ’2π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ 𝑛 𝑛 ∫ ∞ π‘ˆ(𝑛;π‘₯,𝑑)cosh(2πœ‹πœ‰π‘‘)+𝑖𝑉(𝑛;π‘₯,𝑑)sinh(2πœ‹πœ‰π‘‘) Γ— π‘‘π‘›βˆ’1d𝑑. 𝑒2πœ‹π‘‘+π‘’βˆ’2πœ‹π‘‘βˆ’2cos2πœ‹π‘₯ 0 Thenmakingthetransformation𝑒=π‘’βˆ’2πœ‹π‘‘ in(3.5), weeasilyobtainformula(3.4). This completes the proof. β–‘ Similarly, we obtain Theorem 3.4. For 𝑛=1,2,..., 0β‰€β„œ(π‘₯)≀1, βˆ£πœ‰βˆ£< 1, πœ‰ βˆˆβ„, we have 2 4π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ (3.6) β„° (π‘₯;𝑒2πœ‹π‘–πœ‰)=(βˆ’1)𝑛 𝑛 πœ‹π‘›+1 ∫ 1 𝑋′(𝑛;π‘₯,𝑑)cosh(2πœ‰log𝑑)βˆ’π‘– π‘Œβ€²(𝑛;π‘₯,𝑑)sinh(2πœ‰log𝑑) Γ— (log𝑑)𝑛d𝑑, 𝑑4βˆ’2𝑑2cos2πœ‹π‘₯+1 0 where [ ( ) ( )] π‘›πœ‹ π‘›πœ‹ 𝑋′(𝑛;π‘₯,𝑑)= 𝑑2sin πœ‹π‘₯+ +sin πœ‹π‘₯βˆ’ , 2 2 [ ( ) ( )] π‘›πœ‹ π‘›πœ‹ π‘Œβ€²(𝑛;π‘₯,𝑑)= 𝑑2cos πœ‹π‘₯+ βˆ’cos πœ‹π‘₯βˆ’ . 2 2 Remark 3.5. For any integers β„“, we see easily that ℬ (π‘₯;𝑒2πœ‹π‘–(β„“+πœ‰)) = ℬ (π‘₯;𝑒2πœ‹π‘–πœ‰), 𝑛 𝑛 β„° (π‘₯;𝑒2πœ‹π‘–(β„“+πœ‰)) = β„° (π‘₯;𝑒2πœ‹π‘–πœ‰). Therefore, the Apostol-Bernoulli polynomials 𝑛 𝑛 ℬ (π‘₯;𝑒2πœ‹π‘–πœ‰)andtheApostol-Eulerpolynomialsβ„° (π‘₯;𝑒2πœ‹π‘–πœ‰)aretheperiodicityfunc- 𝑛 𝑛 tions in πœ‰ with period 2πœ‹. In view of this observation we say that πœ‰ may take any real numbers in Theorem 3.1–Theorem 3.4. Remark 3.6. WecanalsoproveTheorem2.1andTheorem2.2byTheorem3.1and Theorem 3.2, respectively, in an inverse process. 4. Explicit formulas for the Apostol-Bernoulli and Apostol-Euler polynomials at rational arguments In this section we obtain some explicit formulas for the Apostol-Bernoulli and Apostol-Euler polynomials at rational arguments. We can see that some known formulas of CvijoviΒ΄c and Klinowski are the corresponding special cases of our for- mulas. The Hurwitz-Lerch zeta function Ξ¦(𝑧,𝑠,π‘Ž) defined by (cf., e.g., [21, p. 121, et seq.]) βˆ‘βˆž 𝑧𝑛 (4.1) Ξ¦(𝑧,𝑠,π‘Ž):= (𝑛+π‘Ž)𝑠 ( 𝑛=0 ) π‘Žβˆˆβ„‚βˆ–β„€βˆ’; π‘ βˆˆβ„‚ when βˆ£π‘§βˆ£<1; β„œ(𝑠)>1 when βˆ£π‘§βˆ£=1 0 FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS 2201 contains, as its special cases, not only the Riemann and Hurwitz zeta functions ( ) 1 1 βˆ‘βˆž 1 (4.2) 𝜁(𝑠):=Ξ¦(1,𝑠,1)=𝜁(𝑠,1)= 𝜁 𝑠, = 2π‘ βˆ’1 2 𝑛𝑠 𝑛=1 and βˆ‘βˆž 1 ( ) (4.3) 𝜁(𝑠,π‘Ž):=Ξ¦(1,𝑠,π‘Ž)= β„œ(𝑠)>1; π‘Žβˆˆ/ β„€βˆ’ (𝑛+π‘Ž)𝑠 0 𝑛=0 and the Lerch zeta function (or periodic zeta function) βˆ‘βˆž 𝑒2π‘›πœ‹π‘–πœ‰ ( ) (4.4) 𝑙 (πœ‰):= =𝑒2πœ‹π‘–πœ‰ Ξ¦ 𝑒2πœ‹π‘–πœ‰,𝑠,1 𝑠 𝑛𝑠 𝑛=1 (πœ‰ βˆˆβ„; β„œ(𝑠)>1), but also such other functions as the polylogarithmic function βˆ‘βˆž 𝑧𝑛 (4.5) Li (𝑧):= =𝑧 Ξ¦(𝑧,𝑠,1) 𝑠 𝑛𝑠 ( 𝑛=1 ) π‘ βˆˆβ„‚ when βˆ£π‘§βˆ£<1; β„œ(𝑠)>1 when βˆ£π‘§βˆ£=1 and the Lipschitz-Lerch zeta function (cf. [21, p. 122, Eq. 2.5 (11)]) βˆ‘βˆž 𝑒2π‘›πœ‹π‘–πœ‰ ( ) (4.6) πœ™(πœ‰,π‘Ž,𝑠):= =Ξ¦ 𝑒2πœ‹π‘–πœ‰,𝑠,π‘Ž =:𝐿(πœ‰,𝑠,π‘Ž) (𝑛+π‘Ž)𝑠 ( 𝑛=0 ) π‘Žβˆˆβ„‚βˆ–β„€βˆ’; β„œ(𝑠)>0 when πœ‰ βˆˆβ„βˆ–β„€; β„œ(𝑠)>1 when πœ‰ βˆˆβ„€ , 0 which was first studied by Rudolf Lipschitz (1832-1903) and MatyaΒ΄Λ‡s Lerch (1860- 1922) in connection with Dirichlet’s famous theorem on primes in arithmetic pro- gressions. Recently, H. M. Srivastava made use of Apostol’s formula (see [2, p. 164]) ( ) ℬ π‘Ž;𝑒2πœ‹π‘–πœ‰ (4.7) πœ™(πœ‰,π‘Ž,1βˆ’π‘›)=Ξ¦(𝑒2πœ‹π‘–πœ‰,1βˆ’π‘›,π‘Ž)=βˆ’ 𝑛 (π‘›βˆˆβ„•) 𝑛 and Lerch’s functional equation (see [2, p. 161, (1.4)]) (4.8) { [( ) ] Ξ“(𝑠) 1 πœ™(πœ‰,π‘Ž,1βˆ’π‘ )= exp π‘ βˆ’2π‘Žπœ‰ πœ‹π‘– πœ™(βˆ’π‘Ž,πœ‰,𝑠) (2πœ‹)𝑠 2 [( ) ] } 1 +exp βˆ’ 𝑠+2π‘Ž(1βˆ’πœ‰) πœ‹π‘– πœ™(π‘Ž,1βˆ’πœ‰,𝑠) 2 (π‘ βˆˆβ„‚; 0<πœ‰ <1) 2202 QIU-MINGLUO to derive the following formula of Apostol-Bernoulli polynomials at rational argu- ments (see [20, p. 84, Eq. (4.6)]): (4.9) ( ) { ( ) [( ) ] 𝑝 𝑛! βˆ‘π‘ž πœ‰+π‘—βˆ’1 𝑛 2(πœ‰+π‘—βˆ’1)𝑝 ℬ ;𝑒2πœ‹π‘–πœ‰ =βˆ’ 𝜁 𝑛, exp βˆ’ πœ‹π‘– 𝑛 π‘ž (2π‘žπœ‹)𝑛 π‘ž 2 π‘ž 𝑗=1 ( ) [( ) ]} βˆ‘π‘ž π‘—βˆ’πœ‰ 𝑛 2(π‘—βˆ’πœ‰)𝑝 + 𝜁 𝑛, exp βˆ’ + πœ‹π‘– π‘ž 2 π‘ž 𝑗=1 (4.10) (π‘›βˆˆβ„•βˆ–{1}; π‘ž βˆˆβ„•; π‘βˆˆβ„€; πœ‰ βˆˆβ„). Below we obtain similar formulas by using Fourier expansions for the Apostol- Bernoulli polynomials and Apostol-Euler polynomials, respectively. Theorem 4.1. For 𝑛 ∈ β„•βˆ–{1}, π‘ž ∈ β„•, 𝑝 ∈ β„€, πœ‰ ∈ ℝ, βˆ£πœ‰βˆ£ < 1, the following formula of Apostol-Bernoulli polynomials at rational arguments (4.11) ( ) ( ) { ( ) [( ) ] 𝑝 𝑝 𝑛! βˆ‘π‘ž 𝑗+πœ‰ 𝑛 2(𝑗+πœ‰)𝑝 ℬ ;𝑒2πœ‹π‘–πœ‰ =βˆ’Ξ” ;πœ‰ βˆ’ 𝜁 𝑛, exp βˆ’ πœ‹π‘– 𝑛 π‘ž 𝑛 π‘ž (2πœ‹π‘ž)𝑛 π‘ž 2 π‘ž 𝑗=1 ( ) [( ) ]} βˆ‘π‘ž π‘—βˆ’πœ‰ 𝑛 2(π‘—βˆ’πœ‰)𝑝 + 𝜁 𝑛, exp βˆ’ + πœ‹π‘– π‘ž 2 π‘ž 𝑗=1 (βˆ’1)𝑛𝑛! holdstrueintermsoftheHurwitzzetafunction,whereΞ” (π‘₯;πœ‰)=0or 𝑛 𝑒2πœ‹π‘–π‘₯πœ‰(2πœ‹π‘–πœ‰)𝑛 according as πœ‰ =0 or πœ‰ βˆ•=0, respectively. Proof. We employ formula (2.3), [ [( ) ] [( ) ]] 𝑛!𝑖𝑛 βˆ‘βˆž exp βˆ’2πœ‹π‘˜π‘₯+ π‘›πœ‹ 𝑖 βˆ‘βˆž exp 2πœ‹π‘˜π‘₯βˆ’ π‘›πœ‹ 𝑖 ℬ (π‘₯;πœ†)=βˆ’π›Ώ (π‘₯;πœ†)βˆ’ 2 + 2 , 𝑛 𝑛 πœ†π‘₯ (2πœ‹π‘–π‘˜+logπœ†)𝑛 (2πœ‹π‘–π‘˜βˆ’logπœ†)𝑛 π‘˜=1 π‘˜=1 so that, in view of the definition (4.1) and the elementary series identity βˆ‘βˆž βˆ‘β„“ βˆ‘βˆž (4.12) 𝑓(π‘˜)= 𝑓(β„“π‘˜+𝑗) (β„“βˆˆβ„•), π‘˜=1 𝑗=1π‘˜=0 we find the formula: (4.13) 𝑛!π‘–π‘›πœ†βˆ’π‘₯ ℬ (π‘₯;πœ†)=βˆ’π›Ώ (π‘₯;πœ†)βˆ’ 𝑛 𝑛 (2πœ‹π‘–β„“)𝑛 ⎑ βˆ‘β„“ ( 2πœ‹π‘–π‘—βˆ’logπœ†) [( π‘›πœ‹) ] Γ—βŽ£ Ξ¦ 𝑒2πœ‹π‘–β„“π‘₯,𝑛, exp 2πœ‹π‘—π‘₯βˆ’ 𝑖 2πœ‹π‘–β„“ 2 𝑗=1 ⎀ βˆ‘β„“ ( 2πœ‹π‘–π‘—+logπœ†) [ ( π‘›πœ‹) ] + Ξ¦ π‘’βˆ’2πœ‹π‘–β„“π‘₯,𝑛, exp βˆ’ 2πœ‹π‘—π‘₯+ 𝑖 ⎦. 2πœ‹π‘–β„“ 2 𝑗=1 Setting πœ† = exp(2πœ‹π‘–πœ‰), π‘₯ = 𝑝, β„“ = π‘ž in (4.13), we then obtain the assertion of π‘ž Theorem 4.1. This completes the proof. β–‘

Description:
MATHEMATICS OF COMPUTATION. Volume 78, Number . the results of H. Haruki and T. M. Rassias in a different way and showed several different
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.