Four-loop relation between the MS and on-shell 6 quark mass 1 0 2 n a J 4 PeterMarquard 1 DeutschesElektronenSynchrotronDESY,Platanenallee6,15738Zeuthen,Germany ] E-mail: [email protected] h p AlexanderV.Smirnov - p ScientificResearchComputingCenter,MoscowStateUniversity,119991,Moscow,Russia e E-mail: [email protected] h [ VladimirA. Smirnov 1 SkobeltsynInstituteofNuclearPhysics,MoscowStateUniversity,119991,Moscow,Russia v E-mail: [email protected] 8 4 MatthiasSteinhauser∗ 7 3 InstitutfürTheoretischeTeilchenphysik,KarlsruheInstituteofTechnology(KIT),76128 0 Karlsruhe,Germany . 1 E-mail: [email protected] 0 6 1 Inthiscontributionwe discussthefour-looprelationbetweentheon-shellandMSdefinitionof : v heavyquarkmasseswhichisappliedtothetop,bottomandcharmcase. Wealsopresentrelations i X betweentheMSquarkmassandvariousthresholdmassdefinitionsanddiscusstheuncertaintyat r next-to-next-to-next-to-leadingorder. a 12thInternationalSymposiumonRadiativeCorrections(Radcor2015)andLoopFestXIV(Radiative CorrectionsfortheLHCandFutureColliders) 15-19June,2015 UCLADepartmentofPhysics&AstronomyLosAngeles,USA ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser 1. Introduction In the Standard Model (and many of its extensions) quark masses enter as fundamental pa- rameters m into the underlying Lagrange density. Once quantum corrections are considered one q has to fix the precise definition of m . For heavy quarks a natural one is the on-shell definition q whereonerequiresthatthequarkpropagatorS (q)hasapoleforq2=(MOS)2. However,thereare q q manysituationswhereotherdefinitionsaremoreconvenient. Asanexamplewementionthedecay rate of Higgs bosons to bottom quarks where, when expressed in terms of the MS bottom quark massevaluatedattheappropriate scale,potentially largelogarithmsareautomatically summedup. A further example isthe threshold production of top quark pairs in electron-positron annihilation. For this process one has to adopt a properly constructed (so-called) threshold mass which, on the one hand, isof short-distance nature as theMSmass. Ontheother hand, ithassimilar features as theon-shell mass. Inparticular, ithasaphysicaldefinitionatthreshold. It is important to have precise relations among the various mass definitions. In Ref. [1] four- loopcorrections totherelationbetweentheMSandon-shellheavyquarkdefinitionhasbeencom- puted. This result has been used to derive next-to-next-to-next-to-leading order (N3LO) relations among theMS and themost popular threshold masses, namely the PS[2], 1S [3, 4, 5]and RS[6] masses. The relation between the MS (m) and the on-shell mass (M) is obtained by considering in a firststeptheirrelation tothebaremass,m : 0 m0=ZMSm, m0=ZOSM. (1.1) m m Here,ZMS isknowntofive-looporder[7]. However,inourcalculation, onlythefour-loop resultis m necessary[8,9,10]. ZOSiscomputedfromthescalarandvectorcontributionofthequarktwo-point m function withon-shellexternalmomentumvia ZOS = 1+S (q2=M2)+S (q2=M2). (1.2) m V S One-,two-andthree-loopresultstoZOShavebeencomputedinRefs.[11],[12]and[13,14,15,16], m respectively. Four-loopresulthaverecently beencomputedinRef.[1]. Byconstruction, theratioofthetwoequations in(1.1)isfinitewhichleadsto m(m ) z (m ) = . (1.3) m M Itisconvenient tocasttheperturbative expansion intheform z (m ) = (cid:229) a s nz(n), (1.4) m (cid:16)p (cid:17) m n≥0 (0) with z =1. In the next section we present results for z up to four-loop order and discuss the m m numerical effects for charm, bottom and top quarks. Afterwards we consider in Section 3 the relation betweentheMSandvarious threshold masses. Section4containsourconclusions. 2 Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser 2. Four-loopMS-on-shell relation For the computation of the fermion self energy we use an automated setup which generates all contributing amplitudes with the help of qgraf [17]. The output is transformed to FORM3- readable [18] input using q2e and exp [19, 20]. Afterwards projectors for the scalar and vector partareapplied,tracesaretakenandthescalarproductsinthenumeratoraredecomposedinpropa- gatorfactors. Thisleadstoseveralmilliondifferentintegralsencodedinfunctionswith14different indices whichbelongto100different integralfamilies. The Laporta algorithm [21] is applied to each family using FIRE5 [22] and crusher [23] which are written in C++. Then we use the code tsort [24], which is part of the latest FIRE version, to reveal relations between primary master integrals (following recipes of Ref. [25]) and endupwith386four-loop massiveon-shellpropagator integrals, i.e. with p2=M2. Up to this point the whole calculation is analytic. However, at the moment not all master integrals could be evaluated analytically but only numerically using FIESTA [26, 27, 28] which leadstoanaccuracyofaboutfivetosixdigitsforthehigheste expansion term. Forsomeintegrals a two- or threefold Mellin Barnes representation could be derived which enabled us to obtain a precision ofmorethaneight,insomecasesevenmorethan20digits. Foreachintegralwhichisevaluatednumerically,eache coefficientgetsaseparateuncertainty assigned. SinceitresultsfromanumericalMonteCarlointegrationweinterpretitasastandardde- viationandcombinetheindividualuncertaintiesinthefinalexpressionquadratically. Furthermore, wemultiplytheuncertainty inthefinalresultfortheMSandon-shellrelation byafactorfive. Notethatwehaveperformedthecalculationallowingforageneralgaugeparameterx keeping terms up to order x 2 in the expression wegive to the reduction routines. We have checked that x dropsoutaftermassrenormalization butbeforeinserting themasterintegrals. In the following we show the MS-on-shell relation in the form where the on-shell mass is computed from the MS mass. We discuss the top, bottom and charm quark case and use as input the following MS masses: m ≡ m (m ) = 163.643 GeV, m ≡ m (m ) = 4.163 GeV [29], and t t t b b b m (3 GeV) = 0.986 GeV [29]. The corresponding values for the strong coupling are given by c a (6)(m )=0.1088,a (5)(m )=0.2268,anda (4)(3GeV)=0.2560. Theyhavebeencomputedfrom s t s b s a (5)(M )=0.1185 [30] using RunDec[31, 32]. In the case of the charm quark we also provide s Z resultsform =m usingtheinputvaluesm ≡m (m )=1.279GeVanda (4)(m )=0.3923. Note c c c c s c that the choice m =3GeVispreferable since ithasthe advantage thatlow renormalization scales m ≈m areavoided. Ourresultsread c M = m 1+0.4244a +0.8345a 2+2.375a 3+(8.49±0.25)a 4 t t s s s s (cid:0) (cid:1) = 163.643+7.557+1.617+0.501+0.195±0.005 GeV, (2.1) M = m 1+0.4244a +0.9401a 2+3.045a 3+(12.57±0.38)a 4 b b(cid:0) s s s s(cid:1) = 4.163+0.401+0.201+0.148+0.138±0.004 GeV, (2.2) M = m (3GeV) 1+1.133a +3.119a 2+10.98a 3+(51.29±0.52)a 4 c c s s s s (cid:0) (cid:1) = 0.986+0.286+0.202+0.182+0.217±0.002 GeV, (2.3) 3 Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser M = m 1+0.4244a +1.0456a 2+3.757a 3+(17.36±0.52)a 4 c c(cid:0) s s s s(cid:1) = 1.279+0.213+0.206+0.290+0.526±0.016 GeV. (2.4) Forthetopquarkthehigherordercorrections becomesuccessivelysmallerbyafactortwotothree leading to a four-loop correction term of about 200 MeV. This is the same order of magnitude as theintrinsic uncertainty oftheMS-on-shell relation givenbyL . Thefour-loop corrections are QCD stillsmallerthanthecurrentuncertainty ofthetopquarkformtheTEVATRONandtheLHC[33]. However,theyarenotnegligible. Forthebottom andcharm quarkcase thesituation iscompletely different. Noconvergence is observed when increasing the loop order. In the case of the charm quark where m (m ) is chosen c c as a starting point one even observes a four-loop coefficient which is almost twice as large as the three-loop one. From the above results one can conclude that the immediate application of the MS-on-shell relation isonlymeaningful forthetopquarkcase. Forthelighterquarks theon-shell massparam- eter should beavoided. Ifnecessary anappropriately chosen threshold massshould beused aswe willdiscussinthenextsection. In the following we present for the top quark mass the inverted relation of Eq. (2.1) which reads1 m = M 1−0.4244a −0.65441a 2−1.944a 3−(7.23±0.22)a 4 t t s s s s (cid:0) (cid:1) = 173.34−7.948−1.324−0.425−0.171±0.005 GeV, (2.5) whereM =173.34 GeV[33]anda (6)(M)=0.1080 hasbeenused. Thisequation canbeusedto t s t computem (m )foragivenvaluefortheon-shellmassM. t t t 3. Relationbetween MSand threshold massesto N3LO InthissectionwepresentnumericalresultsfortheMSquarkmassesusinginputvaluesforthe PS,1SandRSthresholdmasses. Inpracticalapplicationsthelatterareextractedfromcomparisons withexperimentaldata. ThederivationoftheN3LOrelationsisdiscussedinRef.[1]followingthe prescriptions providedintheoriginalreferences [2,3,4,5,6]. Table1showsresultsfortheMStopquarkmasscomputed fromthePS,1SandRSthreshold massvaluesgiveninthefirstandsecondrow. Notethatthesevaluesarechoseninsuchawaythatin allthreecasesthesameMSmassisobtainedafterapplyingfour-loopcorrections, whichfacilitates thecomparison. Notealso,thatincontrasttothecorresponding tableinRef.[1]wechooseforthe factorization scale of thePSmass m =80 GeVinstead of m =20GeV.Thisissuggested bythe f f N3LO threshold analysis of s (e+e− →tt¯) performed in Ref. [34]. The factorization scale for the RSmassiskeptatm =20GeV. f In all three cases one observes a rapid convergence of the perturbative series. In fact, the NNLO term amounts to at most 210 MeV (1S mass), and at N3LO at most 20 MeV (RS mass). After increasing the four-loop MS-on-shell term by 3%, which is the current uncertainty on the four-loopcoefficientinEq.(1.4),themassvaluesreducesby6MeV.Combiningthesetwosources 1NotethattheMSvalueusedinEq.(2.1)hasbeenobtainedusingEq.(2.5)tothree-loopaccuracy. 4 Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser input mPS= m1S= mRS= #loops 168.204 172.227 171.215 1 164.311 165.045 164.847 2 163.713 163.861 163.853 3 163.625 163.651 163.663 4 163.643 163.643 163.643 4(×1.03) 163.637 163.637 163.637 Table 1: m(m)in GeVcomputedfromthePS,1SandRSquarkmassusingLOtoN3LOaccuracy. The t t numbersinthelastlineareobtainedbytakingintoaccounttheuncertaintyofthefour-loopcoefficient,i.e., itisincreasedby3%. 166.0 1 loop 2 loops 165.5 PS 3 loops 4 loops ) V e 165.0 G ( ) t 164.5 m ( t m 164.0 163.5 100 150 200 250 300 µ (GeV) Figure 1: MS top quark mass m(m ) computed from the PS mass with LO, NLO, NNLO and N3LO t t accuracyasafunctionoftherenormalizationscaleusedintheMS-thresholdmassrelation. of uncertainties one ends up in a final uncertainty below 20 MeV which is sufficient for a precise determination ofm atafuturelinearcollider [34]. t LetusatthispointhaveacloserlooktothePSmass. InTable1therenormalization scalehas been fixedto m =m . It isalso interesting toconsider different values of m and compute ina first t step m (m )whichisthen evolved to m (m )using renormalization group methods. InFigure 1we t t t 5 Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser 163.8 PS 1S ) V RS e 3 loops G 4 loops ( 163.7 ) t m ( t m 163.6 100 150 200 250 300 µ (GeV) Figure 2: MS top quarkmass m(m) computedfrom the PS, 1S and RS mass with NNLO (dashed)and t t N3LO(solidline)accuracyasafunctionoftherenormalizationscaleusedintheMS-thresholdmassrelation. Form =300GeVthelinesfrombottomtotopcorrespondtothePS,1SandRSmass. plot theresult form (m )computed frommPS =168.204 GeVusing LO,NLO,NNLOand N3LO t t t accuracy (from short-dashed to solid lines). Whereas the LO curve shows a variation of several hundred MeV the N3LO is basically independent of m . Actually, in the considered range from m /2 to 2m it varies by less than 20 MeV, a number comparable to the difference between the t t NNLOandN3LOresultatthecentral scale m =m . t ThebehaviouroftheNNLOandN3LOcurveofFigure1ismagnifiedinFigure2(redcurves). Inaddition thecorresponding resultsareshownforthe1S(green)andRS(blue)mass. Inallthree cases one observes a significant improvement of the m dependence when going from NNLO to N3LO.Furthermore, theN3LOcurvesofallthreethreshold massesonlydependmildlyon m . InTable2results fortheMSbottom quark massareshown. Theyarecomputed fromthePS, 1S and RS masses as given in the first and second row of the table using LO, NLO, NNLO and N3LOaccuracy. Similartothetopquarkcase,oneobservesarapidconvergence withashiftbelow 10MeVfromthelastperturbativeorder. Avariationofthefour-loopMS-on-shellcoefficientleads toashiftof4MeVintheMSmass. InTable3weshowthecorresponding resultsfortheMScharmquarkmass. Eveninthiscase 6 Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser input mPS= m1S= mRS= #loops 4.483 4.670 4.365 1 4.266 4.308 4.210 2 4.191 4.190 4.172 3 4.161 4.154 4.158 4 4.163 4.163 4.163 4(×1.03) 4.159 4.159 4.159 Table2: m (m )inGeVcomputedfromthePS,1SandRSquarkmassusingLOtoN3LOaccuracy. The b b numbersinthelastlineareobtainedbytakingintoaccounttheuncertaintyofthefour-loopcoefficient,i.e., itisincreasedby3%. ThefactorizationscalesforthePSandRSmassaresetto2GeV. input mPS= m1S= mRS= #loops 1.155 1.552 1.044 1 1.078 1.265 1.028 2 1.021 1.119 1.008 3 0.993 1.033 0.991 4 0.986 0.986 0.986 4(×1.03) 0.984 0.984 0.984 Table 3: m (3 GeV) in GeV computedfromthe PS, 1SandRS quarkmassusing LO to N3LO accuracy. c Thenumbersinthelastlineareobtainedbytakingintoaccounttheuncertaintyofthefour-loopcoefficient, i.e.,itisincreasedby3%. ThefactorizationscalesforthePSandRSmassaresetto2GeV. weobserveareasonable convergence oftheperturbativeseries. ForthePSandRSmasstheN3LO corrections areevenbelow10MeV. 4. Conclusions In this contribution we considered the four-loop relation between the MS and on-shell heavy quark masses and applied it to the top, bottom and charm case. Whereas the perturbative series converges wellfortopitdoesnotfortheothertwocases. Thissuggests thattheon-shelltopquark massisareasonablygoodparameterattheorderof100MeVorevenbetter. Forallthreecasesthe perturbative relation between thethreshold (PS,1S,RS)andtheMSmassesisperturbatively well behaved. Thus, in case a threshold mass is determined from a physical quantity like a (threshold) cross section or a bound state energy it can be related to the corresponding MS mass with high precision. Acknowledgments We thank the High Performance Computing Center Stuttgart (HLRS) and the Supercomput- ing Center of Lomonosov Moscow State University [35] for providing computing time used for 7 Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser the numerical computations with FIESTA.P.M. was supported in part by the EU Network HIG- GSTOOLSPITN-GA-2012-316704. Thisworkwassupported bytheDFGthrough theSFB/TR9 “ComputationalParticlePhysics”. TheworkofV.S.wassupportedbytheAlexandervonHumboldt Foundation (HumboldtForschungspreis). References [1] P.Marquard,A.V.Smirnov,V.A.SmirnovandM.Steinhauser,Phys.Rev.Lett.114(2015)14, 142002doi:10.1103/PhysRevLett.114.142002[arXiv:1502.01030[hep-ph]]. [2] M.Beneke,Phys.Lett.B434(1998)115[hep-ph/9804241]. [3] A.H.Hoang,Z.LigetiandA.V.Manohar,Phys.Rev.D59(1999)074017[hep-ph/9811239]. [4] A.H.Hoang,Z.LigetiandA.V.Manohar,Phys.Rev.Lett.82(1999)277[hep-ph/9809423]. [5] A.H.HoangandT.Teubner,Phys.Rev.D60(1999)114027[hep-ph/9904468]. [6] A.Pineda,JHEP0106(2001)022[hep-ph/0105008]. [7] P.A.Baikov,K.G.ChetyrkinandJ.H.KÃijhn,JHEP1410(2014)76doi:10.1007/JHEP10(2014)076 [arXiv:1402.6611[hep-ph]]. [8] K.G.Chetyrkin,Phys.Lett.B404(1997)161[hep-ph/9703278]. [9] J.A.M.Vermaseren,S.A.LarinandT.vanRitbergen,Phys.Lett.B405(1997)327 [hep-ph/9703284]. [10] K.G.Chetyrkin,Nucl.Phys.B710(2005)499[hep-ph/0405193]. [11] R.Tarrach,Nucl.Phys.B183(1981)384. [12] N.Gray,D.J.Broadhurst,W.GrafeandK.Schilcher,Z.Phys.C48(1990)673. [13] K.G.ChetyrkinandM.Steinhauser,Phys.Rev.Lett.83(1999)4001[hep-ph/9907509]. [14] K.G.ChetyrkinandM.Steinhauser,Nucl.Phys.B573(2000)617[hep-ph/9911434]. [15] K.MelnikovandT.v.Ritbergen,Phys.Lett.B482(2000)99[hep-ph/9912391]. [16] P.Marquard,L.Mihaila,J.H.PiclumandM.Steinhauser,Nucl.Phys.B773(2007)1 [hep-ph/0702185]. [17] P.Nogueira,J.Comput.Phys.105(1993)279. [18] J.A.M.Vermaseren,math-ph/0010025. [19] R.Harlander,T.SeidenstickerandM.Steinhauser,Phys.Lett.B426(1998)125[hep-ph/9712228]. [20] T.Seidensticker,hep-ph/9905298. [21] S.Laporta,Int.J.Mod.Phys.A15(2000)5087[hep-ph/0102033]. [22] A.V.Smirnov,Comput.Phys.Commun.189(2014)182doi:10.1016/j.cpc.2014.11.024 [arXiv:1408.2372[hep-ph]]. [23] P.Marquard,D.Seidel,unpublished. [24] A.Pak,J.Phys.Conf.Ser.368(2012)012049[arXiv:1111.0868[hep-ph]]. [25] A.V.SmirnovandV.A.Smirnov,Comput.Phys.Commun.184(2013)2820[arXiv:1302.5885 [hep-ph]]. 8 Four-looprelationbetweentheMSandon-shellquarkmass MatthiasSteinhauser [26] A.V.SmirnovandM.N.Tentyukov,Comput.Phys.Commun.180(2009)735[arXiv:0807.4129 [hep-ph]]. [27] A.V.Smirnov,V.A.SmirnovandM.Tentyukov,Comput.Phys.Commun.182(2011)790 [arXiv:0912.0158[hep-ph]]. [28] A.V.Smirnov,Comput.Phys.Commun.185(2014)2090[arXiv:1312.3186[hep-ph]]. [29] K.G.Chetyrkin,J.H.Kühn,A.Maier,P.Maierhofer,P.Marquard,M.SteinhauserandC.Sturm, Phys.Rev.D80(2009)074010[arXiv:0907.2110[hep-ph]]. [30] K.A.Oliveetal.[ParticleDataGroupCollaboration],Chin.Phys.C38(2014)090001. [31] K.G.Chetyrkin,J.H.KühnandM.Steinhauser,Comput.Phys.Commun.133(2000)43 [hep-ph/0004189]. [32] B.SchmidtandM.Steinhauser,Comput.Phys.Commun.183(2012)1845[arXiv:1201.6149 [hep-ph]]. [33] [ATLASandCDFandCMSandD0Collaborations],arXiv:1403.4427[hep-ex]. [34] M.Beneke,Y.Kiyo,P.Marquard,A.Penin,J.PiclumandM.Steinhauser,Phys.Rev.Lett.115 (2015)19,192001doi:10.1103/PhysRevLett.115.192001[arXiv:1506.06864[hep-ph]]. [35] V.Sadovnichy,A.Tikhonravov,V.Voevodin,andV.Opanasenko,“‘Lomonosov’:Supercomputingat MoscowStateUniversity.”InContemporaryHighPerformanceComputing:FromPetascaletoward Exascale(Chapman&Hall/CRCComputationalScience),pp.283-307,BocaRaton,USA,CRC Press,2013. 9