Four definitions for the fractional Laplacian N. Accomazzo (UPV/EHU), S. Baena (UB), A. Becerra Tom´e (US), J. Mart´ınez (BCAM), A. Rodr´ıguez (UCM), I. Soler (UM) VIII Escuela-Taller de Ana´lisis Funcional Basque Center for Applied Mathematics (BCAM) bpc 1 Nap time, March 2 , 2018 1 International Women’s Day Group 3 Fractional Laplacian VIII Escuela-Taller 1 / 40 Basic example of fractional operator : fractional Laplacian Laplace fractional operator: several points of view Functional analysis: M. Riesz, S. Bochner, W. Feller, E. Hille, R. S. Phillips, A. V. Balakrishnan, T. Kato, Mart´ınez–Carracedo y Sanz–Alix, K. Yosida Potencial theory for fractional laplacian: N. S. Landkof L´evy’s processes: K. Bogdan e.a. Partial Derivative Ecuations: L. Ca↵arelli y L. Silvestre Scattering theory: C. R. Graham y M. Zworski, S-Y. A. Chang y M.d.M. Gonz´alez Kato’s square root (solved by P. Auscher e.a.) Group 3 Fractional Laplacian VIII Escuela-Taller 2 / 40 Laplace fractional operator: several points of view Functional analysis: M. Riesz, S. Bochner, W. Feller, E. Hille, R. S. Phillips, A. V. Balakrishnan, T. Kato, Mart´ınez–Carracedo y Sanz–Alix, K. Yosida Potencial theory for fractional laplacian: N. S. Landkof L´evy’s processes: K. Bogdan e.a. Partial Derivative Ecuations: L. Ca↵arelli y L. Silvestre Scattering theory: C. R. Graham y M. Zworski, S-Y. A. Chang y M.d.M. Gonz´alez Kato’s square root (solved by P. Auscher e.a.) Basic example of fractional operator : fractional Laplacian Group 3 Fractional Laplacian VIII Escuela-Taller 2 / 40 A pointwise definition of the fractional Laplacian Group 3 Fractional Laplacian VIII Escuela-Taller 3 / 40 n • n S (R ) is the space C (R ) of functions that 2 p/2 a kf k = sup sup (1 + |x| ) |∂ f (x)| < • p 2 N [ {0} p |a|p x2Rn This space endowed with the metric topology • kf gk p p d(f , g) = Â 2 1+ kf gk p=0 p The working space n We are going to work with the space S (R ) of L. Schwartz’ rapidly decreasing functions. Group 3 Fractional Laplacian VIII Escuela-Taller 4 / 40 This space endowed with the metric topology • kf gk p p d(f , g) = Â 2 1+ kf gk p=0 p The working space n We are going to work with the space S (R ) of L. Schwartz’ rapidly decreasing functions. n • n S (R ) is the space C (R ) of functions that 2 p/2 a kf k = sup sup (1 + |x| ) |∂ f (x)| < • p 2 N [ {0} p |a|p x2Rn Group 3 Fractional Laplacian VIII Escuela-Taller 4 / 40 The working space n We are going to work with the space S (R ) of L. Schwartz’ rapidly decreasing functions. n • n S (R ) is the space C (R ) of functions that 2 p/2 a kf k = sup sup (1 + |x| ) |∂ f (x)| < • p 2 N [ {0} p |a|p x2Rn This space endowed with the metric topology • kf gk p p d(f , g) = Â 2 1+ kf gk p=0 p Group 3 Fractional Laplacian VIII Escuela-Taller 4 / 40 If we introduce the spherical and solid averaging operators ˆ x+y f (x + y) + f (x y) 1 My f (x) = Ay f (x) = f (t) dt 2 2y x y 00 then we can reformulate f (x) like this 00 f (x) My f (x) f (x) Ay f (x) f (x) = 2 l´ım = 6 l´ım y!0 y2 y!0 y2 First definition motivation 2 Let f 2 C (a, b), then for every x 2 (a, b) o n e h a s 00 2f (x) f (x + y) f (x y) f (x) = l´ım y!0 y2 Group 3 Fractional Laplacian VIII Escuela-Taller 5 / 40 00 then we can reformulate f (x) like this 00 f (x) My f (x) f (x) Ay f (x) f (x) = 2 l´ım = 6 l´ım y!0 y2 y!0 y2 First definition motivation 2 Let f 2 C (a, b), then for every x 2 (a, b) o n e h a s 00 2f (x) f (x + y) f (x y) f (x) = l´ım y!0 y2 If we introduce the spherical and solid averaging operators ˆ x+y f (x + y) + f (x y) 1 My f (x) = Ay f (x) = f (t) dt 2 2y x y Group 3 Fractional Laplacian VIII Escuela-Taller 5 / 40 First definition motivation 2 Let f 2 C (a, b), then for every x 2 (a, b) o n e h a s 00 2f (x) f (x + y) f (x y) f (x) = l´ım y!0 y2 If we introduce the spherical and solid averaging operators ˆ x+y f (x + y) + f (x y) 1 My f (x) = Ay f (x) = f (t) dt 2 2y x y 00 then we can reformulate f (x) like this 00 f (x) My f (x) f (x) Ay f (x) f (x) = 2 l´ım = 6 l´ım y!0 y2 y!0 y2 Group 3 Fractional Laplacian VIII Escuela-Taller 5 / 40