ebook img

Four definitions for the fractional Laplacian PDF

116 Pages·2017·1.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Four definitions for the fractional Laplacian

Four definitions for the fractional Laplacian N. Accomazzo (UPV/EHU), S. Baena (UB), A. Becerra Tom´e (US), J. Mart´ınez (BCAM), A. Rodr´ıguez (UCM), I. Soler (UM) VIII Escuela-Taller de Ana´lisis Funcional Basque Center for Applied Mathematics (BCAM) bpc 1 Nap time, March 2 , 2018 1 International Women’s Day Group 3 Fractional Laplacian VIII Escuela-Taller 1 / 40 Basic example of fractional operator : fractional Laplacian Laplace fractional operator: several points of view Functional analysis: M. Riesz, S. Bochner, W. Feller, E. Hille, R. S. Phillips, A. V. Balakrishnan, T. Kato, Mart´ınez–Carracedo y Sanz–Alix, K. Yosida Potencial theory for fractional laplacian: N. S. Landkof L´evy’s processes: K. Bogdan e.a. Partial Derivative Ecuations: L. Ca↵arelli y L. Silvestre Scattering theory: C. R. Graham y M. Zworski, S-Y. A. Chang y M.d.M. Gonz´alez Kato’s square root (solved by P. Auscher e.a.) Group 3 Fractional Laplacian VIII Escuela-Taller 2 / 40 Laplace fractional operator: several points of view Functional analysis: M. Riesz, S. Bochner, W. Feller, E. Hille, R. S. Phillips, A. V. Balakrishnan, T. Kato, Mart´ınez–Carracedo y Sanz–Alix, K. Yosida Potencial theory for fractional laplacian: N. S. Landkof L´evy’s processes: K. Bogdan e.a. Partial Derivative Ecuations: L. Ca↵arelli y L. Silvestre Scattering theory: C. R. Graham y M. Zworski, S-Y. A. Chang y M.d.M. Gonz´alez Kato’s square root (solved by P. Auscher e.a.) Basic example of fractional operator : fractional Laplacian Group 3 Fractional Laplacian VIII Escuela-Taller 2 / 40 A pointwise definition of the fractional Laplacian Group 3 Fractional Laplacian VIII Escuela-Taller 3 / 40 n • n S (R ) is the space C (R ) of functions that 2 p/2 a kf k = sup sup (1 + |x| ) |∂ f (x)| < • p 2 N [ {0} p |a|p x2Rn This space endowed with the metric topology • kf gk p p d(f , g) = Â 2 1+ kf gk p=0 p The working space n We are going to work with the space S (R ) of L. Schwartz’ rapidly decreasing functions. Group 3 Fractional Laplacian VIII Escuela-Taller 4 / 40 This space endowed with the metric topology • kf gk p p d(f , g) = Â 2 1+ kf gk p=0 p The working space n We are going to work with the space S (R ) of L. Schwartz’ rapidly decreasing functions. n • n S (R ) is the space C (R ) of functions that 2 p/2 a kf k = sup sup (1 + |x| ) |∂ f (x)| < • p 2 N [ {0} p |a|p x2Rn Group 3 Fractional Laplacian VIII Escuela-Taller 4 / 40 The working space n We are going to work with the space S (R ) of L. Schwartz’ rapidly decreasing functions. n • n S (R ) is the space C (R ) of functions that 2 p/2 a kf k = sup sup (1 + |x| ) |∂ f (x)| < • p 2 N [ {0} p |a|p x2Rn This space endowed with the metric topology • kf gk p p d(f , g) = Â 2 1+ kf gk p=0 p Group 3 Fractional Laplacian VIII Escuela-Taller 4 / 40 If we introduce the spherical and solid averaging operators ˆ x+y f (x + y) + f (x y) 1 My f (x) = Ay f (x) = f (t) dt 2 2y x y 00 then we can reformulate f (x) like this 00 f (x) My f (x) f (x) Ay f (x) f (x) = 2 l´ım = 6 l´ım y!0 y2 y!0 y2 First definition motivation 2 Let f 2 C (a, b), then for every x 2 (a, b) o n e h a s 00 2f (x) f (x + y) f (x y) f (x) = l´ım y!0 y2 Group 3 Fractional Laplacian VIII Escuela-Taller 5 / 40 00 then we can reformulate f (x) like this 00 f (x) My f (x) f (x) Ay f (x) f (x) = 2 l´ım = 6 l´ım y!0 y2 y!0 y2 First definition motivation 2 Let f 2 C (a, b), then for every x 2 (a, b) o n e h a s 00 2f (x) f (x + y) f (x y) f (x) = l´ım y!0 y2 If we introduce the spherical and solid averaging operators ˆ x+y f (x + y) + f (x y) 1 My f (x) = Ay f (x) = f (t) dt 2 2y x y Group 3 Fractional Laplacian VIII Escuela-Taller 5 / 40 First definition motivation 2 Let f 2 C (a, b), then for every x 2 (a, b) o n e h a s 00 2f (x) f (x + y) f (x y) f (x) = l´ım y!0 y2 If we introduce the spherical and solid averaging operators ˆ x+y f (x + y) + f (x y) 1 My f (x) = Ay f (x) = f (t) dt 2 2y x y 00 then we can reformulate f (x) like this 00 f (x) My f (x) f (x) Ay f (x) f (x) = 2 l´ım = 6 l´ım y!0 y2 y!0 y2 Group 3 Fractional Laplacian VIII Escuela-Taller 5 / 40

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.