ebook img

Foundations of Quantitative Finance Book II: Probability Spaces and Random Variables PDF

276 Pages·2022·13.032 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundations of Quantitative Finance Book II: Probability Spaces and Random Variables

Foundations of Quantitative Finance Chapman & Hall/CRC Financial Mathematics Series Aims and scope: The field of financial mathematics forms an ever-expanding slice of the financial sector. This series aims to capture new developments and summarize what is known over the whole spectrum of this field. It will include a broad range of textbooks, reference works and handbooks that are meant to appeal to both academics and practitioners. The inclusion of numerical code and concrete real-world examples is highly encouraged. Rama Cont Series Editors: Department of Mathematics M.A.H. Dempster Imperial College, UK Centre for Financial Research Department of Pure Mathematics and Statistics University of Cambridge, UK Robert A. Jarrow Dilip B. Madan Lynch Professor of Investment Management Robert H. Smith School of Business University of Maryland, USA Johnson Graduate School of Management Cornell University, USA Commodities: Fundamental Theory of Futures, Forwards, and Derivatives Pricing, Second Edition M.A.H. Dempster, Ke Tang Foundations of Quantitative Finance Book I: Measure Spaces and Measurable Functions Robert R. Reitano Introducing Financial Mathematics: Theory, Binomial Models, and Applications Mladen Victor Wickerhauser Foundations of Quantitative Finance Book II: Probability Spaces and Random Variables Robert R. Reitano Financial Mathematics: From Discrete to Continuous Time Kevin J. Hastings Financial Mathematics : A Comprehensive Treatment in Discrete Time Giuseppe Campolieti and Roman N. Makarov For more information about this series please visit: https://www.crcpress.com/Chapman-HallCRC-Financial-Mathe- matics-Series/book-series/CHFINANCMTH Foundations of Quantitative Finance Book II: Probability Spaces and Random Variables Robert R. Reitano Brandeis International Business School Waltham, MA First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2023 Robert R. Reitano Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as- sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho- tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Reitano, Robert R., 1950- author. Title: Foundations of quantitative finance. Book II, Probability spaces and random variables / Robert R. Reitano. Other titles: Probability spaces and random variables Description: First edition. | Boca Raton : CRC Press, 2023. | Includes bibliographical references and index. Identifiers: LCCN 2022025709 | ISBN 9781032197180 (hardback) | ISBN 9781032197173 (paperback) | ISBN 9781003260547 (ebook) Subjects: LCSH: Finance--Mathematical models. | Probabilities. | Random variables. Classification: LCC HG106 .R448 2023 | DDC 332.01/5195--dc23/eng/20220601 LC record available at https://lccn.loc.gov/2022025709 ISBN: 978-1-032-19718-0 (hbk) ISBN: 978-1-032-19717-3 (pbk) ISBN: 978-1-003-26054-7 (ebk) DOI: 10.1201/9781003260547 Typeset in CMR10 by KnowledgeWorks Global Ltd. Publisher’s note: This book has been prepared from camera-ready copy provided by the authors. to Dorothy and Domenic Taylor & Francis Taylor & Francis Group http://taylorandfrancis.com Contents Preface xi Author xiii Introduction xv 1 Probability Spaces 1 1.1 Probability Theory: A Very Brief History . . . . . . . . . . . . . . . . . . . 1 1.2 A Finite Measure Space with a “Story” . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Bond Loss Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Some Probability Measures on R . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Measures from Discrete Probability Theory . . . . . . . . . . . . . . 11 1.3.2 Measures from Continuous Probability Theory . . . . . . . . . . . . 16 1.3.3 More General Probability Measures on R . . . . . . . . . . . . . . . 20 1.4 Independent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.1 Independent Classes and Associated Sigma Algebras . . . . . . . . . 24 1.5 Conditional Probability Measures . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.1 Law of Total Probability . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.2 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 Limit Theorems on Measurable Sets 35 2.1 Introduction to Limit Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 The Borel-Cantelli Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3 Kolmogorov’s Zero-One Law . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 Random Variables and Distribution Functions 47 3.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Bond Loss Example (Continued) . . . . . . . . . . . . . . . . . . . . 50 3.2 “Inverse” of a Distribution Function . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 Properties of F∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.2 The Function F∗∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Random Vectors and Joint Distribution Functions . . . . . . . . . . . . . . 62 3.3.1 Marginal Distribution Functions . . . . . . . . . . . . . . . . . . . . 65 3.3.2 Conditional Distribution Functions . . . . . . . . . . . . . . . . . . . 67 3.4 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Sigma Algebras Generated by R.V.s . . . . . . . . . . . . . . . . . . 70 3.4.2 Independent Random Variables and Vectors . . . . . . . . . . . . . . 71 3.4.3 Distribution Functions of Independent R.V.s . . . . . . . . . . . . . 74 3.4.4 Independence and Transformations . . . . . . . . . . . . . . . . . . . 75 vii viii Contents 4 Probability Spaces and i.i.d. RVs 77 4.1 Probability Space (S(cid:48),E(cid:48),µ(cid:48)) and i.i.d. {X }N . . . . . . . . . . . . . . . . 78 j j=1 4.1.1 First Construction: (S(cid:48) ,E(cid:48) ,µ(cid:48) ) . . . . . . . . . . . . . . . . . . . . 79 F F F 4.2 Simulation of Random Variables - Theory . . . . . . . . . . . . . . . . . . . 81 4.2.1 Distributional Results . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.2 Independence Results . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.3 Second Construction: (S(cid:48) ,E(cid:48) ,µ(cid:48) ) . . . . . . . . . . . . . . . . . . . 88 U U U 4.3 An Alternate Construction for Discrete Random Variables . . . . . . . . . 91 4.3.1 Third Construction: (S(cid:48),E(cid:48),µ(cid:48)) . . . . . . . . . . . . . . . . . . . . . 93 p p p 5 Limit Theorems for RV Sequences 99 5.1 Two Limit Theorems for Binomial Sequences . . . . . . . . . . . . . . . . . 99 5.1.1 The Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . 100 5.1.2 The Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . 103 5.1.3 Strong Laws versus Weak Laws . . . . . . . . . . . . . . . . . . . . . 108 5.2 Convergence of Random Variables 1 . . . . . . . . . . . . . . . . . . . . . . 108 5.2.1 Notions of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2.2 Convergence Relationships . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.3 Slutsky’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2.4 Kolmogorov’s Zero-One Law . . . . . . . . . . . . . . . . . . . . . . 118 6 Distribution Functions and Borel Measures 123 6.1 Distribution Functions on R . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.1.1 Probability Measures from Distribution Functions . . . . . . . . . . 126 6.1.2 Random Variables from Distribution Functions . . . . . . . . . . . . 129 6.2 Distribution Functions on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.2.1 Probability Measures from Distribution Functions . . . . . . . . . . 131 6.2.2 Random Vectors from Distribution Functions . . . . . . . . . . . . . 135 6.2.3 Marginal and Conditional Distribution Functions . . . . . . . . . . . 136 7 Copulas and Sklar’s Theorem 137 7.1 Fr´echet Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.2 Copulas and Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.2.1 Identifying Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.3 Partial Results on Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . 145 7.4 Examples of Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.4.1 Archimedean Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.4.2 Extreme Value Copulas . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.5 General Result on Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . 158 7.5.1 The Distributional Transform . . . . . . . . . . . . . . . . . . . . . . 160 7.5.2 Sklar’s Theorem - The General Case . . . . . . . . . . . . . . . . . . 164 7.6 Tail Dependence and Copulas . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.6.1 Bivariate Tail Dependence . . . . . . . . . . . . . . . . . . . . . . . . 165 7.6.2 Multivariate Tail Dependence and Copulas . . . . . . . . . . . . . . 170 7.6.3 Survival Functions and Copulas . . . . . . . . . . . . . . . . . . . . . 173 8 Weak Convergence 179 8.1 Definitions of Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . 180 8.2 Properties of Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . 184 8.3 Weak Convergence and Left Continuous Inverses . . . . . . . . . . . . . . . 189 8.4 Skorokhod’s Representation Theorem . . . . . . . . . . . . . . . . . . . . . 191 Contents ix 8.4.1 Mapping Theorem on R . . . . . . . . . . . . . . . . . . . . . . . . . 192 8.5 Convergence of Random Variables 2 . . . . . . . . . . . . . . . . . . . . . . 194 8.5.1 Mann-Wald Theorem on R . . . . . . . . . . . . . . . . . . . . . . . 194 8.5.2 The Delta-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9 Estimating Tail Events 1 201 9.1 Large Deviation Theory 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.2 Extreme Value Theory 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 9.2.1 Introduction and Examples . . . . . . . . . . . . . . . . . . . . . . . 206 9.2.2 Extreme Value Distributions . . . . . . . . . . . . . . . . . . . . . . 210 9.2.3 The Fisher-Tippett-Gnedenko Theorem . . . . . . . . . . . . . . . . 212 9.3 The Pickands-Balkema-de Haan Theorem . . . . . . . . . . . . . . . . . . . 223 9.3.1 Quantile Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 9.3.2 Tail Probability Estimation . . . . . . . . . . . . . . . . . . . . . . . 224 9.4 γ in Theory: von Mises’ Condition . . . . . . . . . . . . . . . . . . . . . . . 229 9.5 Independence vs. Tail Independence . . . . . . . . . . . . . . . . . . . . . . 234 9.6 Multivariate Extreme Value Theory . . . . . . . . . . . . . . . . . . . . . . 235 9.6.1 Multivariate Fisher-Tippett-Gnedenko Theorem . . . . . . . . . . . 236 9.6.2 The Extreme Value Distribution G . . . . . . . . . . . . . . . . . . . 238 9.6.3 The Extreme Value Copula C . . . . . . . . . . . . . . . . . . . . . 241 G References 249 Index 253

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.