ebook img

Foundations of Nonlinear Algebra PDF

424 Pages·2013·3.029 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundations of Nonlinear Algebra

Foundations of Nonlinear Algebra JohnPerry UniversityofSouthernMississippi [email protected] http://www.math.usm.edu/perry/ Copyright2012JohnPerry www.math.usm.edu/perry/ CreativeCommonsAttribution-Noncommercial-ShareAlike3.0UnitedStates Youarefree: • toShare—tocopy,distributeandtransmitthework • toRemix—toadaptthework Underthefollowingconditions: • Attribution—Youmustattributetheworkinthemannerspecifiedbytheauthororlicensor (butnotinanywaythatsuggeststhattheyendorseyouoryouruseofthework). • Noncommercial—Youmaynotusethisworkforcommercialpurposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the re- sultingworkonlyunderthesameorsimilarlicensetothisone. Withtheunderstandingthat: • Waiver—Any of the above conditions can be waived if you get permission from the copy- rightholder. • OtherRights—Innowayareanyofthefollowingrightsaffectedbythelicense: ◦ Yourfairdealingorfairuserights; ◦ Apartfromtheremixrightsgrantedunderthislicense,theauthor’smoralrights; ◦ Rights other persons may have either in the work itself or in how the work is used, suchaspublicityorprivacyrights. • Notice—For any reuse or distribution, you must make clear to others the license terms of thiswork. Thebestwaytodothisiswithalinktothiswebpage: http://creativecommons.org/licenses/by-nc-sa/3.0/ us/legalcode Table of Contents Reference sheet for notation ........................................................... vi A few acknowledgements.............................................................viii Preface................................................................................ix Overview............................................................................ix Tothestudent........................................................................x Howtosucceedatalgebra Waysthesenotestrytohelpyousucceed Some interesting problems ............................................................. 1 Nimfinity Acardtrick Internetcommerce Factorization Conclusion 0. Foundations.........................................................................4 1. Setsandrelations ................................................................... 4 Sets Relations Binaryoperations Orderings 2. Division .......................................................................... 13 TheDivisionTheorem Equivalenceclasses 3. Linearalgebra.....................................................................20 Matrices Lineartransformations Determinants Proofsofsomepropertiesofdeterminants..............................................30 Part I. Monoids and groups 1. Monoids............................................................................35 1. Fromintegersandmonomialstomonoids...........................................35 Monomials M N Similaritiesbetween and Monoids 2. Isomorphism......................................................................44 3. Directproducts....................................................................47 4. AbsorptionandtheAscendingChainCondition.....................................51 Absorption Dickson’sLemmaandtheAscendingChainCondition AlookbackattheHilbert-Dicksongame i 2. Groups.............................................................................58 1. Groups ........................................................................... 58 Precisedefinition,firstexamples Orderofagroup,Cayleytables Otherelementarypropertiesofgroups 2. Thesymmetriesofatriangle........................................................66 Intuitivedevelopmentof D 3 Detailedproofthat D containsallsymmetriesofthetriangle 3 3. Cyclicgroupsandorderofelements.................................................76 Cyclicgroupsandgenerators Theorderofanelement 4. Therootsofunity.................................................................83 Imaginaryandcomplexnumbers Thecomplexplane Rootsofunity 3. Subgroups..........................................................................94 1. Subgroups ........................................................................ 94 2. Cosets............................................................................99 Theidea PropertiesofCosets 3. Lagrange’sTheorem..............................................................103 4. QuotientGroups.................................................................107 “Normal”subgroups Quotientgroups 5. “Clockwork”groups..............................................................115 4. Isomorphisms ..................................................................... 121 1. Homomorphisms ................................................................ 121 Groupisomorphisms Propertiesofgrouphomorphism 2. Consequencesofisomorphism.....................................................128 Isomorphismisanequivalencerelation Isomorphismpreservesbasicpropertiesofgroups Isomorphismpreservesthestructureofsubgroups 3. TheIsomorphismTheorem.......................................................133 Motivatingexample TheIsomorphismTheorem 4. Automorphismsandgroupsofautomorphisms ..................................... 138 Theautomorphismgroup 5. Groups of permutations...........................................................143 1. Permutations.....................................................................143 Permutationsasfunctions Groupsofpermutations 2. Cyclenotation ................................................................... 147 ii Cycles Cyclearithmetic Permutationsascycles 3. Dihedralgroups..................................................................156 Fromsymmetriestopermutations D and S n n 4. Cayley’sTheorem................................................................161 5. Alternatinggroups ............................................................... 165 Transpositions Evenandoddpermutations Thealternatinggroup 6. The15-puzzle....................................................................170 6. Number theory....................................................................173 1. TheGreatestCommonDivisor....................................................173 Commondivisors TheEuclideanAlgorithm Bezout’sidentity 2. TheChineseRemainderTheorem ................................................. 179 ThesimpleChineseRemainderTheorem AgeneralizedChineseRemainderTheorem 3. TheFundamentalTheoremofArithmetic..........................................185 4. Multiplicativeclockworkgroups...................................................188 Z Multiplicationin n Zerodivisors Z∗ Meet n 5. Euler’sTheorem..................................................................193 Euler’sTheorem Computingϕ(n) Fastexponentiation 6. RSAEncryption ................................................................. 197 Descriptionandexample Theory Part II. Rings 7. Rings..............................................................................206 1. Astructureforadditionandmultiplication.........................................206 2. IntegralDomainsandFields.......................................................211 Twoconvenientkindsofrings Thefieldoffractions 3. Polynomialrings ................................................................. 216 Fundamentalnotions Propertiesofpolynomials 4. Euclideandomains................................................................225 Divisionofpolynomials iii Euclideandomains 8. Ideals..............................................................................231 1. Ideals............................................................................231 Definitionandexamples Propertiesandelementarytheory 2. PrincipalIdealDomains...........................................................238 Principalidealdomains NoetherianringsandtheAscendingChainCondition 3. CosetsandQuotientRings........................................................243 Thenecessityofideals Usinganidealtocreateanewring 4. Whenisaquotientringanintegraldomainorafield?................................248 Maximalandprimeideals Acriterionthatdetermineswhenaquotientringisanintegraldomainorafield 5. Ringisomorphisms...............................................................253 Ringhomomorphismsandtheirproperties Theisomorphismtheoremforrings Aconstructionofthecomplexnumbers Part III. Applications 9. Roots of univariate polynomials ................................................... 264 1. Radicalextensionsofafield ....................................................... 264 Extendingafieldbyaroot Complexroots 2. Thesymmetriesoftherootsofapolynomial ....................................... 270 3. Galoisgroups .................................................................... 273 Isomorphismsoffieldextensionsthatpermutetheroots Solvingpolynomialsbyradicals 4. “Solvable”groups.................................................................279 5. TheTheoremofAbelandRuffini..................................................283 A“reverse-Lagrange”Theorem Wecannotsolvethequinticbyradicals 6. TheFundamentalTheoremofAlgebra.............................................289 BackgroundfromCalculus Somemorealgebra ProofoftheFundamentalTheorem 10. Factorization.....................................................................294 1. Thelinkbetweenfactoringandideals.............................................294 2. UniqueFactorizationdomains....................................................297 3. FiniteFieldsI ................................................................... 300 Thecharacteristicofaring Example Mainresult iv 4. FinitefieldsII...................................................................307 5. Extendingaringbyaroot........................................................313 6. Polynomialfactorizationinfinitefields............................................316 Distinctdegreefactorization. Equaldegreefactorization Squarefreefactorization 7. Factoringintegerpolynomials....................................................324 Onebigirreducible. Severalsmallprimes. 11. Roots of multivariate polyomials..................................................327 1. Gaussianelimination ............................................................ 328 2. Monomialorderings.............................................................334 3. Matrixrepresentationsofmonomialorderings.....................................341 4. ThestructureofaGröbnerbasis..................................................344 5. Buchberger’salgorithm .......................................................... 354 6. Nullstellensatz .................................................................. 363 7. Elementaryapplications ......................................................... 365 12. Advanced methods of computing Gröbner bases .................................. 370 1. TheGebauer-Mölleralgorithm...................................................370 2. TheF4algorithm................................................................379 3. Signature-basedalgorithmstocomputeaGröbnerbasis.............................384 Part III. Appendices Where can I go from here? ........................................................... 393 Advancedgrouptheory ............................................................ 393 Advancedringtheory..............................................................393 Applications.......................................................................393 Hints to Exercises....................................................................394 HintstoChapter0.................................................................394 HintstoChapter1.................................................................394 HintstoChapter2.................................................................395 HintstoChapter3.................................................................396 HintstoChapter4.................................................................397 HintstoChapter5.................................................................398 HintstoChapter6.................................................................398 HintstoChapter7.................................................................399 HintstoChapter8.................................................................400 HintstoChapter10................................................................400 HintstoChapter11................................................................401 Index................................................................................402 References ........................................................................... 406 v Reference sheet for notation [r] theelement r +nZofZ n 〈 〉 g thegroup(orideal)generatedby g A thealternatinggrouponthreeelements 3 (cid:47) A G forG agroup,AisanormalsubgroupofG (cid:47) A R for Raring,Aisanidealof R [G,G] commutatorsubgroupofagroupG [x,y] for x and y inagroupG,thecommutatorof x and y Conj (H) thegroupofconjugationsof H bya a conj (x) theautomorphismofconjugationby g g D thesymmetriesofatriangle 3 | d n d divides n degf thedegreeofthepolynomial f D thedihedralgroupofsymmetriesofaregularpolygonwith n sides n D (R) thesetofalldiagonalmatriceswhosevaluesalongthediagonalisconstant n Z d thesetofintegermultiplesof d f (G) for f ahomomorphismandG agroup(orring),theimageofG F(α) fieldextensionofFbyal pha Frac(R) thesetoffractionsofacommutativering R F thesetofallfunctionsmapping S toitself S G/A thesetofleftcosetsofA \ G A thesetofrightcosetsofA gA theleftcosetofAwith g ∼ G =H G isisomorphicto H GL (R) thegenerallineargroupofinvertiblematrices m (cid:81)n G theordered n-tuplesofG ,G ,...,G i=1 i 1 2 n × G H theorderedpairsofelementsofG and H gz forG agroupand g,z ∈G,theconjugationof g by z,or zgz−1 < H G forG agroup, H isasubgroupofG kerf thekernelofthehomomorphism f lcm(t,u) theleastcommonmultipleofthemonomials t and u lm(p) theleadingmonomialofthepolynomial p lv(p) theleadingvariableofalinearpolynomial p M thesetofmonomialsinonevariable M thesetofmonomialsin n variables n N (H) thenormalizerofasubgroup H ofG G N { } thenaturalnumbers 0,1,2,... N+ positiveintegers Ω the nthrootsofunity;thatis,allrootsofthepolynomial xn−1 n ord(x) theorderof x P(S) thepowersetof S Q thegroupofquaternions 8 R/A for R a ring and Aan ideal subring of R, R/Ais the quotient ring of R with respecttoA

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.