ebook img

Foundations of Commutative Rings and Their Modules PDF

711 Pages·2016·4.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundations of Commutative Rings and Their Modules

Algebra and Applications Fanggui Wang Hwankoo Kim Foundations of Commutative Rings and Their Modules Foundations of Commutative Rings and Their Modules Algebra and Applications Volume 22 Series editors: Michel Broué, Université Paris Diderot, Paris, France Alice Fialowski, Eötvös Loránd University, Budapest, Hungary Eric Friedlander, University of Southern California, Los Angeles, USA Iain Gordon, University of Edinburgh, Edinburgh, UK John Greenless, Sheffield University, Sheffield, UK Gerhard Hiß, Aachen University, Aachen, Germany Ieke Moerdijk, Radboud University Nijmegen, Nijmegen, The Netherlands Christoph Schweigert, Hamburg University, Hamburg, Germany Mina Teicher, Bar-llan University, Ramat-Gan, Israel Alain Verschoren, University of Antwerp, Antwerp, Belgium Algebra and Applications aims to publish well written and carefully refereed monographs with up-to-date information about progress in all fields of algebra, its classical impact on commutative and noncommutative algebraic and differential geometry, K-theory and alge- braictopology,aswellasapplicationsinrelateddomains,suchasnumbertheory,homotopy and(co)homology theory, physics anddiscretemathematics. Particular emphasis will be put on state-of-the-art topics such as rings of differential oper- ators, Lie algebras and super-algebras, group rings and algebras, C*-algebras, Kac-Moody theory, arithmetic algebraic geometry, Hopf algebras and quantum groups, as well as their applications.Inaddition,AlgebraandApplicationswillalsopublishmonographsdedicated to computational aspects of these topics as well as algebraic and geometric methods in computer science. More information about this series at http://www.springer.com/series/6253 Fanggui Wang Hwankoo Kim (cid:129) Foundations of Commutative Rings and Their Modules 123 FangguiWang HwankooKim Schoolof Mathematics Schoolof Computer andInformation SichuanNormal University Engineering Chengdu Hoseo University China Asan Korea (Republicof) ISSN 1572-5553 ISSN 2192-2950 (electronic) Algebra andApplications ISBN978-981-10-3336-0 ISBN978-981-10-3337-7 (eBook) DOI10.1007/978-981-10-3337-7 LibraryofCongressControlNumber:2016960184 ©SpringerNatureSingaporePteLtd.2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#22-06/08GatewayEast,Singapore189721,Singapore For our families. Preface There are different approaches to characterizing the structures of commutative rings:thecategoryofmodulesovercommutativerings,homologytheories,theories ofthestaroperationonintegral domains,thegeneral theoryofcommutativerings, andrelativehomologytheories.Thesehavedifferentemphases;however,theyhave some common ground: the basic theory of commutative rings. This book starts by elaborating this theory. Thus, this book is intended to serve as a textbook for a course in commutative algebra at a graduate level and as a reference book for researchers. Aglanceatthecontentsofthefirstfivechaptersshowsthatwecoverthosetopics normally included in any commutative algebra text, although to a greater level of detailthanotherbooks.However,thecontentsinthisbook’sdiffersignificantlyfrom themostcommutativealgebratexts,namelyourtreatmentoftheDedekind–Mertens formula(Sect.1.7),the(small)finitisticdimensionofaring(Sect.3.10),Gorenstein rings (Sect. 4.6), valuation overrings and the valuative dimension (Sect. 5.4), and Nagata rings as quotient rings of polynomial rings (Sect. 5.5). On the other hand, Chap.6presentsw-modulesovercommutativeringsastheycanbemostcommonly usedbytorsiontheoryandmultiplicativeidealtheorysincethew-operationtheoryis abridgecloselyconnectingtorsiontheorywithmultiplicativeidealtheory.Chapter7 dealswithmultiplicativeidealtheoryoverintegraldomains,whichcanbethoughtof generalizationsandextensionsofworkdonebyR.GilmerinthebookMultiplicative Ideal Theory [68]. In Chap. 8, we collect various results of the pullbacks, more specially Milnor squares and D þ M constructions, which are probably the most important example generating machine. In Chap. 9, we probe coherent rings with finite weak global dimension and try to elaborate on the local ring of weak global dimension two by combining homological tricks and methods of star operation theoryintroducedinChap.7.Chapter10isdevotedtotheGrothendieckgroupofa commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chap. 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Inordertokeepthisbookfrombecomingtoounwieldy,weomittedimportanttopics vii viii Preface such as generalizations of class groups and Kronecker function rings and some generalizations of Krull domains. While at least portions of the first five chapters should be read in order, the remainingchaptersareessentiallyindependentofeachother,exceptforChaps.6–8. Thosesectionsthatareessentiallyapplicationsofpreviousconceptsorelsearenot necessary for the rest of the book. Each section of this book is followed by a selection of exercises, of varying degreesofdifficulty.Theexercisesshoulddeepenthereader’sunderstandingofthe conceptspresentedinthisbook,althoughsomemaybelimitedtothelengthofthe supplement related to content. Chengdu, China Fanggui Wang Asan, Korea (Republic of) Hwankoo Kim May 2016 Contents 1 Basic Theory of Rings and Modules .... .... .... .... ..... .... 1 1.1 Basic Concepts of Rings and Modules... .... .... ..... .... 1 1.1.1 Rings and Ideals . .... .... .... .... .... ..... .... 1 1.1.2 Basic Concepts of Modules. .... .... .... ..... .... 3 1.1.3 Direct Product of Rings, Direct Product and Direct Sum of Modules . .... .... .... .... .... ..... .... 6 1.2 Ring Homomorphisms and Module Homomorphisms..... .... 7 1.2.1 Ring Homomorphisms. .... .... .... .... ..... .... 7 1.2.2 Module Homomorphisms .. .... .... .... ..... .... 10 1.3 Finitely Generated Modules and Matrix Methods... ..... .... 14 1.3.1 Finitely Generated Modules. .... .... .... ..... .... 14 1.3.2 Simple Modules, Maximal Submodules, and Zorn’s Lemma ... .... .... .... .... ..... .... 16 1.3.3 Jacobson Radical of a Ring. .... .... .... ..... .... 18 1.3.4 Matrix Methods.. .... .... .... .... .... ..... .... 18 1.4 Prime Ideals and Nil Radical .. .... .... .... .... ..... .... 22 1.4.1 Prime Ideals..... .... .... .... .... .... ..... .... 22 1.4.2 Nil Radical and Radical of an Ideal... .... ..... .... 24 1.5 Quotient Rings and Quotient Modules ... .... .... ..... .... 25 1.5.1 Local Rings..... .... .... .... .... .... ..... .... 25 1.5.2 Quotient Rings .. .... .... .... .... .... ..... .... 26 1.5.3 Quotient Modules .... .... .... .... .... ..... .... 28 1.6 Free Modules, Torsion Modules, and Torsion-Free Modules ... 33 1.6.1 Free Modules.... .... .... .... .... .... ..... .... 33 1.6.2 Torsion Modules, Torsion-Free Modules, and Divisible Modules. .... .... .... .... ..... .... 36 1.7 Polynomial Rings and Power Series Rings.... .... ..... .... 37 1.7.1 Polynomial Rings over One Indeterminate . ..... .... 37 1.7.2 Polynomials with Coefficients in a Module. ..... .... 41 ix x Contents 1.7.3 Dedekind–Mertens Formula. .... .... .... ..... .... 42 1.7.4 Polynomial Rings over Many Indeterminates and Formal Power Series Rings over One Indeterminate.... .... .... .... ..... .... 45 1.8 Krull Dimension of a Ring.... .... .... .... .... ..... .... 47 1.8.1 Basic Properties of Krull Dimension of a Ring... .... 47 1.8.2 Krull Dimension of a Polynomial Ring.... ..... .... 48 1.8.3 Connected Rings. .... .... .... .... .... ..... .... 50 1.9 Exact Sequences and Commutative Diagrams.. .... ..... .... 51 1.9.1 Exact Sequences . .... .... .... .... .... ..... .... 52 1.9.2 Five Lemma and Snake Lemma . .... .... ..... .... 53 1.9.3 Completion of Diagrams... .... .... .... ..... .... 59 1.9.4 Pushout and Pullback . .... .... .... .... ..... .... 61 1.10 Exercises. .... .... ..... .... .... .... .... .... ..... .... 63 2 The Category of Modules..... .... .... .... .... .... ..... .... 71 2.1 The Functor Hom.. ..... .... .... .... .... .... ..... .... 71 2.1.1 Categories. ..... .... .... .... .... .... ..... .... 71 2.1.2 Functors... ..... .... .... .... .... .... ..... .... 74 2.1.3 Basic Properties of the Functor Hom.. .... ..... .... 75 2.1.4 Natural Transforms of Functors.. .... .... ..... .... 77 2.1.5 Torsionless Modules and Reflexive Modules..... .... 78 2.2 The Functor (cid:2) .... ..... .... .... .... .... .... ..... .... 80 2.2.1 Bilinear Mappings and Tensor Products ... ..... .... 80 2.2.2 Basic Properties of the Functor (cid:2).... .... ..... .... 81 2.2.3 Change of Rings and Adjoint Isomorphism Theorem. .... .... .... .... ..... .... 83 2.2.4 Tensor Product and Localization. .... .... ..... .... 85 2.3 Projective Modules. ..... .... .... .... .... .... ..... .... 86 2.3.1 Projective Modules ... .... .... .... .... ..... .... 87 2.3.2 Kaplansky Theorem... .... .... .... .... ..... .... 90 2.4 Injective Modules.. ..... .... .... .... .... .... ..... .... 93 2.4.1 Injective Modules .... .... .... .... .... ..... .... 93 2.4.2 Injective Envelope of a Module.. .... .... ..... .... 97 2.5 Flat Modules.. .... ..... .... .... .... .... .... ..... .... 100 2.5.1 Flat Modules and Their Characterizations.. ..... .... 100 2.5.2 Faithfully Flat Modules.... .... .... .... ..... .... 106 2.5.3 Direct Limits.... .... .... .... .... .... ..... .... 109 2.6 Finitely Presented Modules.... .... .... .... .... ..... .... 114 2.6.1 Finitely Presented Modules. .... .... .... ..... .... 114 2.6.2 Isomorphism Theorems Related to Hom and (cid:2)... .... 119

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.