ebook img

Foundations of classical electrodynamics PDF

458 Pages·2003·1.867 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundations of classical electrodynamics

Foundations of Classical 1;2 Electrodynamics Friedrich W. Hehl & Yuri N. Obukhov 01 June 2001 1 Keywords: electrodynamics,electromagnetism, axiomatics, ex- terior calculus, classical (cid:12)eld theory, (coupling to) gravitation, com- puteralgebra.{ThebookiswritteninAmericanEnglish(orwhatthe authors conceive as such). Allfootnotes inthe bookwillbe collected at the end of each Part before the references. The image created by Glatzmaier (Fig. B.3.4) is in color, possibly also Fig. B.5.1 on the aspects of the electromagnetic (cid:12)eld. The present format of the book should be changed such as to allow for a 1-line display of longer mathematical formulas. 2 The book is written in Latex. Our master(cid:12)le is birk.tex. The di(cid:11)erent part of the books correspond to the (cid:12)les partI.tex, partA.tex, partB.tex, partC.tex, partD.tex, partE.tex, partO.tex. As of today, only a truncated version is available of the outlook chapter on the (cid:12)le partO.trunc.tex. The completed ver- sion will be handed in later as (cid:12)le partO.tex. { The (cid:12)gures are on separate (cid:12)les. Their names are presently given on the (cid:12)rst page of the text of each part of an outprint. For some of the (cid:12)gures we have extra (cid:12)les available with a higher resolution which are, however, not attached to the draft versionofthe book.Followupofcommandson a Unix system: cd birk, latex birk (2 times), makeindex birk, latex birk, dvips -f birk > birk.ps, gv birk.ps&. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Introduction . . . . . . . . . . . . . . . . . . . . . . . 8 Five plus one axioms . . . . . . . . . . . . . . . . 8 Topological approach . . . . . . . . . . . . . . . . 10 Electromagnetic spacetime relation as (cid:12)fth axiom 11 Electrodynamics in matter and the sixth axiom . 13 List of axioms . . . . . . . . . . . . . . . . . . . . 13 Areminder:Electrodynamicsin3-dimensionalEu- clidean vector calculus . . . . . . . . . . . 13 On the literature . . . . . . . . . . . . . . . . . . 16 References 19 A Mathematics: Some exterior calculus 26 Why exterior di(cid:11)erential forms? 27 A.1 Algebra 33 A.1.1 A real vector space and its dual . . . . . . . . . 33 p A.1.2 Tensors of type q . . . . . . . . . . . . . . . . . 37 (cid:2) (cid:3) vi Contents A.1.3 (cid:10)A generalization of tensors: geometric quantities 38 A.1.4 Almost complex structure . . . . . . . . . . . . . 40 A.1.5 Exterior p-forms . . . . . . . . . . . . . . . . . . 41 A.1.6 Exterior multiplication . . . . . . . . . . . . . . 43 A.1.7 Interior multiplication of a vector with a form. . 46 A.1.8 (cid:10)Volume elements on a vector space, densities, orientation . . . . . . . . . . . . . . . . . . . . . . 47 A.1.9 (cid:10)Levi-CivitasymbolsandgeneralizedKronecker deltas . . . . . . . . . . . . . . . . . . . . . . . . 51 6 A.1.10The space M of two-forms in four dimensions . 55 6 A.1.11Almost complex structure on M . . . . . . . . . 60 A.1.12 Computer algebra . . . . . . . . . . . . . . . . . 63 A.2 Exterior calculus 77 A.2.1 (cid:10)Di(cid:11)erentiable manifolds . . . . . . . . . . . . . 78 A.2.2 Vector (cid:12)elds . . . . . . . . . . . . . . . . . . . . 82 A.2.3 One-form (cid:12)elds, di(cid:11)erential p-forms . . . . . . . 83 A.2.4 Images of vectors and one-forms . . . . . . . . . 84 A.2.5 (cid:10)Volume forms and orientability . . . . . . . . . 87 A.2.6 (cid:10)Twisted forms . . . . . . . . . . . . . . . . . . 88 A.2.7 Exterior derivative . . . . . . . . . . . . . . . . . 90 A.2.8 Frame and coframe . . . . . . . . . . . . . . . . 93 A.2.9 (cid:10)Maps of manifolds: push-forward and pull-back 95 A.2.10(cid:10)Lie derivative . . . . . . . . . . . . . . . . . . . 97 A.2.11Excalc, a Reduce package . . . . . . . . . . . . . 104 A.2.12(cid:10)Closed and exact forms, de Rham cohomology groups . . . . . . . . . . . . . . . . . . . . . . . . 108 A.3 Integration on a manifold 113 A.3.1 Integrationof0-formsandorientabilityofaman- ifold . . . . . . . . . . . . . . . . . . . . . . . . . 113 A.3.2 Integration of n-forms . . . . . . . . . . . . . . . 114 A.3.3 Integration of p-forms with 0 < p < n . . . . . . 116 A.3.4 Stokes’s theorem . . . . . . . . . . . . . . . . . . 121 A.3.5 (cid:10)De Rham’s theorems . . . . . . . . . . . . . . . 124 References 131 Contents vii B Axioms of classical electrodynamics 136 B.1 Electric charge conservation 139 B.1.1 Countingcharges.Absoluteandphysicaldimen- sion . . . . . . . . . . . . . . . . . . . . . . . . . 139 B.1.2 Spacetime and the (cid:12)rst axiom . . . . . . . . . . 145 B.1.3 Electromagnetic excitation . . . . . . . . . . . . 147 B.1.4 Time-spacedecompositionoftheinhomogeneous Maxwell equation . . . . . . . . . . . . . . . . . . 148 B.2 Lorentz force density 153 B.2.1 Electromagnetic (cid:12)eld strength . . . . . . . . . . 153 B.2.2 Second axiom relating mechanics and electrodynamics . . . . . . . . . . . . . . . . 155 B.2.3 The (cid:12)rst three invariants of the electromagnetic (cid:12)eld . . . . . . . . . . . . . . . . . . . . . . . . . 157 B.3 Magnetic (cid:13)ux conservation 161 B.3.1 Third axiom . . . . . . . . . . . . . . . . . . . . 161 B.3.2 Electromagnetic potential . . . . . . . . . . . . . 166 B.3.3 Abelian Chern-Simons and Kiehn 3-forms . . . . 167 B.3.4 Measuring the excitation . . . . . . . . . . . . . 169 B.4 Basic classical electrodynamics summarized, example 177 B.4.1 Integral version and Maxwell’s equations . . . . 177 B.4.2 (cid:10)Jumpconditionsforelectromagneticexcitation and (cid:12)eld strength . . . . . . . . . . . . . . . . . . 183 B.4.3 Arbitrarylocalnon-inertialframe:Maxwell’sequa- tions in components . . . . . . . . . . . . . . . . . 184 B.4.4 (cid:10)Electrodynamicsin(cid:13)atland:2-dimensionalelec- tron gas and quantum Hall e(cid:11)ect . . . . . . . . . 186 B.5Energy-momentum current and action 199 B.5.1 Fourth axiom: localization of energy-momentum 199 B.5.2Propertiesofenergy-momentum,electric-magnetic reciprocity . . . . . . . . . . . . . . . . . . . . . . 202 B.5.3Time-space decomposition of energy-momentum . 212 viii Contents B.5.4 Action . . . . . . . . . . . . . . . . . . . . . . . 214 B.5.5 (cid:10)Coupling of the energy-momentum current to the coframe . . . . . . . . . . . . . . . . . . . . . 218 B.5.6 Maxwell’s equations and the energy-momentum current in Excalc . . . . . . . . . . . . . . . . . . 222 References 227 C More mathematics 232 C.1 Linear connection 233 C.1.1 Covariant di(cid:11)erentiation of tensor (cid:12)elds . . . . . 234 C.1.2 Linear connection 1-forms . . . . . . . . . . . . . 236 C.1.3 (cid:10)Covariantdi(cid:11)erentiationofageneralgeometric quantity . . . . . . . . . . . . . . . . . . . . . . . 239 C.1.4 Parallel transport . . . . . . . . . . . . . . . . . 240 C.1.5 (cid:10)Torsion and curvature . . . . . . . . . . . . . . 241 C.1.6 (cid:10)Cartan’sgeometricinterpretationoftorsionand curvature . . . . . . . . . . . . . . . . . . . . . . 246 C.1.7 (cid:10)Covariant exterior derivative . . . . . . . . . . 248 C.1.8 Thep-formso(a),conn1(a,b),torsion2(a),curv2(a,b)250 C.2 Metric 253 C.2.1 Metric vector spaces . . . . . . . . . . . . . . . . 254 C.2.2 (cid:10)Orthonormal, half-null, and null frames, the coframe statement . . . . . . . . . . . . . . . . . 256 C.2.3 Metric volume 4-form . . . . . . . . . . . . . . . 260 C.2.4 Duality operator for 2-forms as a symmetric al- 6 most complex structure on M . . . . . . . . . . . 262 C.2.5 Fromthedualityoperatortoatripletofcomplex 2-forms . . . . . . . . . . . . . . . . . . . . . . . . 264 C.2.6 From the triplet of complex 2-forms to a duality operator . . . . . . . . . . . . . . . . . . . . . . . 266 C.2.7 From a triplet of complex 2-forms to the metric: Scho(cid:127)nberg-Urbantke formulas . . . . . . . . . . . 269 C.2.8 Hodge star and Excalc’s # . . . . . . . . . . . . 271 C.2.9 Manifold with a metric, Levi-Civita connection . 275 Contents ix C.2.10Codi(cid:11)erential and wave operator, also in Excalc 277 C.2.11(cid:10)Nonmetricity . . . . . . . . . . . . . . . . . . . 279 C.2.12(cid:10)Post-Riemannian pieces of the connection . . . 281 C.2.13 Excalc again . . . . . . . . . . . . . . . . . . . . 285 References 291 D The Maxwell-Lorentz spacetime relation 293 D.1 Linearity between H and F and quartic wave surface 295 D.1.1 Linearity . . . . . . . . . . . . . . . . . . . . . . 295 D.1.2 Extracting the Abelian axion . . . . . . . . . . . 298 D.1.3 Fresnel equation . . . . . . . . . . . . . . . . . . 300 D.1.4 Analysis of the Fresnel equation . . . . . . . . . 305 D.2 Electric-magnetic reciprocity switched on 311 D.2.1 Reciprocity implies closure . . . . . . . . . . . . 311 D.2.2 Almost complex structure . . . . . . . . . . . . . 313 D.2.3 Algebraic solution of the closure relation . . . . 314 D.3 Symmetry switched on additionally 317 D.3.1 Lagrangian and symmetry . . . . . . . . . . . . 317 D.3.2 Duality operator and metric . . . . . . . . . . . 319 D.3.3 (cid:10)Algebraicsolutionoftheclosureandsymmetry relations . . . . . . . . . . . . . . . . . . . . . . . 320 D.3.4 From a quartic wave surface to the lightcone . . 326 D.4 Extracting the conformally invariant part of the metric by an alternative method 333 D.4.1 (cid:10)Triplet of self-dual 2-forms and metric . . . . . 334 D.4.2 Maxwell-LorentzspacetimerelationandMinkowski spacetime . . . . . . . . . . . . . . . . . . . . . . 337 D.4.3 Hodge star operator and isotropy . . . . . . . . . 338 D.4.4 (cid:10)Covariance properties . . . . . . . . . . . . . . 340 x Contents D.5 Fifth axiom 345 References 347 E Electrodynamics in vacuum and in mat- ter 352 E.1 Standard Maxwell{Lorentz theory in vacuum 355 E.1.1 Maxwell-Lorentzequations,impedanceofthevac- uum . . . . . . . . . . . . . . . . . . . . . . . . . 355 E.1.2 Action . . . . . . . . . . . . . . . . . . . . . . . 357 E.1.3 Foliationof a spacetime with a metric. E(cid:11)ective permeabilities . . . . . . . . . . . . . . . . . . . . 358 E.1.4 Symmetry of the energy-momentum current . . . 360 E.2 Electromagnetic spacetime relations beyond lo- cality and linearity 363 E.2.1 Keeping the (cid:12)rst four axioms (cid:12)xed . . . . . . . . 363 E.2.2 (cid:10)Mashhoon . . . . . . . . . . . . . . . . . . . . . 364 E.2.3 Heisenberg-Euler . . . . . . . . . . . . . . . . . . 365 E.2.4 (cid:10)Born-Infeld . . . . . . . . . . . . . . . . . . . . 366 E.2.5 (cid:10)Pleban(cid:19)ski . . . . . . . . . . . . . . . . . . . . . 367 E.3 Electrodynamics in matter, constitutive law 369 E.3.1 Splitting of the current: Sixth axiom . . . . . . . 369 E.3.2 Maxwell’s equations in matter . . . . . . . . . . 371 E.3.3 Linear constitutive law . . . . . . . . . . . . . . 372 E.3.4 Energy-momentum currents in matter . . . . . . 373 E.3.5 (cid:10)Experiment of Walker & Walker . . . . . . . . 379 E.4 Electrodynamics of moving continua 383 E.4.1 Laboratory and material foliation . . . . . . . . 383 E.4.2 Electromagnetic(cid:12)eldinlaboratoryandmaterial frames . . . . . . . . . . . . . . . . . . . . . . . . 387 E.4.3 Optical metric from the constitutive law . . . . . 391 E.4.4 Electromagnetic (cid:12)eld generated in moving con- tinua . . . . . . . . . . . . . . . . . . . . . . . . . 392 Contents xi E.4.5 The experiments of R(cid:127)ontgenand Wilson&Wilson396 E.4.6 Non-inertial \rotating coordinates" . . . . . . . . 401 E.4.7 Rotating observer . . . . . . . . . . . . . . . . . 403 E.4.8 Accelerating observer . . . . . . . . . . . . . . . 405 E.4.9 The proper reference frame of the noninertial observer (\noninertial frame") . . . . . . . . . . . 408 E.4.10 Universality of the Maxwell-Lorentz spacetime relation . . . . . . . . . . . . . . . . . . . . . . . 410 References 413 F Preliminarysketchversion of Validity of clas- sical electrodynamics, interaction with grav- ity, outlook 416 F.1 Classical physics (preliminary) 419 F.1.1 Gravitational (cid:12)eld . . . . . . . . . . . . . . . . . 419 F.1.2 Classical (1st quantized) Dirac (cid:12)eld . . . . . . . 430 F.1.3 Topology and electrodynamics . . . . . . . . . . 432 F.1.4 Remark on possible violations of Poincar(cid:19)e in- variance . . . . . . . . . . . . . . . . . . . . . . . 435 F.2 Quantum physics (preliminary) 437 F.2.1 QED . . . . . . . . . . . . . . . . . . . . . . . . 437 F.2.2 Electro-weak uni(cid:12)cation . . . . . . . . . . . . . . 438 F.2.3 Quantum Chern-Simons and the QHE . . . . . . 440 References 441 Index 444 Contents 1 (cid:12)lebirk/partI.tex,with(cid:12)gures[I01cover.eps,I02cover.eps],2001- 06-01 Description of the book Electric and magnetic phenomena are omnipresent in modern life. Their non-quantum aspects are successfully described by classicalelectrodynamics(Maxwell’stheory).Inthisbook,which is an outgrowth of a physics graduate course, the fundamental structure of classicalelectrodynamicsis presented inthe form of six axioms: (1) electric charge conservation, (2) existence of the Lorentz force, (3) magnetic (cid:13)ux conservation, (4) localization of electromagnetic energy-momentum, (5) existence of an elec- tromagnetic spacetime relation, and (6) splitting of the electric current in material and external pieces. The (cid:12)rst four axioms are well-established. For their formu- lation an arbitrary 4-dimensional di(cid:11)erentiable manifold is re- quired which allows for a foliation into 3-dimensional hypersur- faces. The (cid:12)fth axiom characterizes the environment in which the electromagnetic (cid:12)eld propagates, namely spacetime with or without gravitation. The relativistic description of such general environments remains a research topic of considerable interest. In particular, it is only in this (cid:12)fth axiom that the metric ten- sor of spacetime makes its appearance, thus coupling electro- magnetism and gravitation. The operational interpretation of the physical notions introduced is stressed throughout. In par- ticular, the electrodynamics of moving matter is developed ab initio. The tool for formulating the theory is the calculus of exterior di(cid:11)erential forms which is explained in suÆcient detail, includ- ing the corresponding computer algebra programs. This book presents a fresh and original exposition of the foundations of classical electrodynamics in the tradition of the so-called metric-free approach. The reader will win a new out- lookonthe interrelationshipand the inner workingof Maxwell’s equations and their raison d’^etre. 2 Contents Book Announcement (old version of 1999): Electric and magnetic phenomena play an important role in the natural sciences. They are described by means of classical electrodynamics, as formulated by Maxwell in 1864. As long as the electromagnetic (cid:12)eld is not quantized, Maxwell’s equations provide a correct description of electromagnetism. In this work the foundations of classical electrodynamics are displayed in a consistent axiomatic way. The presentation is based on the simple but far-reaching axioms of electric charge conservation, the existence of the Lorentz force, magnetic (cid:13)ux conservation, and the localization of energy-momentum. While the (cid:12)rst four axioms above are well-established, they are insuf- (cid:12)cient to complete the theory. The missing ingredient is a char- acterization of the environment in which the electromagnetic (cid:12)eld propagates by means of constitutive relations. This envi- ronment is spacetime with or without a material medium and with or without gravitation (curvature, perhaps torsion). The relativistic description of such general environments remains a research topic of considerable interest. In particular, it is only in this last axiom that the spacetime metric tensor makes its appearance, thus coupling electromagnetism and gravitation. The appropriate tool for this theory is the calculus of exte- rior di(cid:11)erential forms, which is introduced before the axioms of electrodynamics are formulated. The operational interpretation of the physical notions introduced is stressed throughout. The book may be used for a course or seminar in theoreti- cal electrodynamics by advanced undergraduates and graduate students inmathematics, physics, and electrical engeneering.Its approach to the fundamentals of classical electrodynamics will also be of interest to researchers and instructors as well in the above-mentioned (cid:12)elds. ==================

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.