ebook img

Foundations of Applied Electromagnetics PDF

615 Pages·2022·47.584 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundations of Applied Electromagnetics

Foundations of Applied Electromagnetics KAMAL SARABANDI FOUNDATIONS OF APPLIED ELECTROMAGNETICS Kamal Sarabandi The University of Michigan Copyright ©2022KamalSarabandi ThisbookispublishedbyMichiganPublishingunderanagreementwiththeauthor.Itismade availablefreeofchargeinelectronicformtoanystudentorinstructorinterestedinthesubject matter. Published intheUnitedStatesofAmericaby MichiganPublishing Manufactured intheUnitedStatesofAmerica ISBN 978-1-60785-819-5 The Free ECE Textbook Initiative is sponsored by the ECE Department at the University of Michigan. The image used in the chapter title pages was taken by theJames Webb Space Telescope, courtesy ofNASA. I dedicate this book to my family: to my wife Shiva and our sons Arya and Sina for their love and support, and to the memory of my parents Abbasali and Jaleh, who instilled in me a passion for science and engineering iv Preface Field theory is one of the fundamental pillars of electrical engineering, with many threads interwoven into numerous areas of science and technology. Classical electromagnetic theory may be considered a mature field of science, but because of its importance in wireless transmission ofdataandenergy, ithasremainedanareaofintenseresearchanddevelopment for almost twocenturies. In recent years, the interest inthe field of applied electromagnetics hasbeenfueledbythedemandforhighdata-ratewirelesscommunication, everywhereandat any time. The implementation of such wireless systems relies on innovation in miniaturized wideband and multiband antennas for handheld devices, vehicles, and infrastructures such as base stations and wifi networks. In addition, knowledge of the characteristics of wave propagation and wave interaction with terrain, vegetation, and manmade structures in urban environmentsisanessentialandcriticaltoolfortheproperdesignofwirelesscommunication networks. Moreover, over the past decade we have witnessed a boom in investment focused ontherapiddevelopment ofautonomous vehicles. Sensorsenvisioned toenable autonomous functionality include short-range and long-range sensors with different modalities. Some of these sensors arebased onelectromagnetic waves,suchasmillimeter-wave radars toprovide the range, direction, and velocity of objects present in traffic scenes. For these systems to function with a high degree of reliability, we need to use applicable wave propagation and scattering models together with highly sophisticated directional antennas, all of which requires in-depth understanding of electromagnetic wave theory. In addition, traditional applications of field theory in areas such as microwave remote sensing, military systems, biomedical applications, and space exploration are active and ongoing. Graduate students interested insuchexcitingfieldsofresearch needastrongfoundation infieldtheory, andthat wasmymotivation forwriting this book onclassical electromagnetics but withan eye onits modernapplications. This book is the outgrowth of my class notes for an entry-level graduate course on electromagnetictheoryattheUniversityofMichiganandwasinspiredbymyownresearchon radar remote sensing, antenna theory, electromagnetic wave propagation, and more recently onbioelectromagnetics. Anytextbookbasedonafieldwithmorethan200yearsofhistorydrawsveryheavilyfrom theworkofanenormousnumberofscientistsandengineers.Thisbookisnotanexceptionand Ifounditimpossibletoprovideacomprehensivelistofreferencestotheoriginalcontributors formosttopicsincluded inthisbook. Publishing this book would not have been possible without the help and encouragement ofseveralcolleagues andstudents. Ihavetofirstthankmydearcolleague andformeradvisor Professor Fawwaz Ulaby, who has carefully reviewed and provided valuable comments and suggestions for improving what is presented in this book. I am also indebted to Mr. Richard Carnes, whospent asignificant amount of effort typing and formatting the book. I have also to mention the contributions of my students Abdelhamid Nasr, Aditya Varma Muppala, and Behzad Yektakhah for helping with some of the figures and computations presented in the book. KAMAL SARABANDI ANN ARBOR, AUGUST 2022 CONTENTS v Contents Preface iv 1 Electromagnetic Fields 1 1-1 TheFieldEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1-2 Faraday’sLawforaMovingSurfaceinaTime-VaryingMagneticField . . . 10 1-3 Ampère’sLawforaMovingSurfaceinaTime-VaryingElectricField . . . . 13 1-4 ConstitutiveRelations: Macroscopic PropertiesofMatter . . . . . . . . . . . 14 1-5 Kramers-KrönigRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1-6 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1-7 DriftCurrentinMetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1-8 HallEffectinConducting Media . . . . . . . . . . . . . . . . . . . . . . . . 35 1-9 Generalized Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 Electromagnetic Concepts,Tools,andTheorems 62 2-1 EquivalentMagneticChargeandCurrentDensities . . . . . . . . . . . . . . 63 2-2 ImageTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2-3 MethodofImagesforOtherProblems . . . . . . . . . . . . . . . . . . . . . 71 2-4 Polarization Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2-5 StoredElectromagnetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . 83 2-6 FlowofEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2-7 Superposition Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2-8 Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2-9 EquivalencePrincipleforElectromagnetic Sources . . . . . . . . . . . . . . 92 3 TheElectromagnetic PotentialsandRadiation 107 3-1 Electromagnetic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3-2 Time-HarmonicElectromagnetic Waves . . . . . . . . . . . . . . . . . . . . 122 3-3 Time-HarmonicRetardedPotential . . . . . . . . . . . . . . . . . . . . . . . 131 3-4 Far-FieldDistanceCriterion . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3-5 SmallLoopofCurrent:AHertzianMagnetic Dipole . . . . . . . . . . . . . 139 3-6 WireAntennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 3-7 EquivalentCircuitforReceivingAntennas . . . . . . . . . . . . . . . . . . . 147 vi CONTENTS 4 FormalSolutionstoMaxwell’sEquationsandTheirApplications 161 4-1 FormalSolutionoftheHelmholtzEquation . . . . . . . . . . . . . . . . . . 162 4-2 SolutionoftheHelmholtzEquationforaComplexMedium . . . . . . . . . . 168 4-3 IntegralEquationsforElectromagnetic Fields . . . . . . . . . . . . . . . . . 176 4-4 IntegralEquationFormulationBasedonEquivalentSources . . . . . . . . . 178 4-5 IntegralEquationFormulationforDielectric Scatterers . . . . . . . . . . . . 181 4-6 Reciprocity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 4-7 Applications oftheReciprocity Theorem . . . . . . . . . . . . . . . . . . . . 189 4-8 Babinet’sPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 5 Electromagnetic PlaneWaves 227 5-1 Plane-WavePropagation inHomogeneous Media . . . . . . . . . . . . . . . 228 5-2 Polarization ofPlaneWaves . . . . . . . . . . . . . . . . . . . . . . . . . . 238 5-3 kDBCoordinate forPlaneWavesinBianisotropic Media . . . . . . . . . . . 247 5-4 Transverse Electric (TE) and Transverse Magnetic (TM) Field Solutions of theHelmholtzEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 5-5 Plane-Wave Reflection at the Interface between a Dielectric Medium and a Good-Conducting Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 5-6 WavePropagationinanInhomogeneousMedium:Geometric-OpticsApprox- imation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 5-7 Plane-WaveReflectionandTransmissionfromaHalf-SpaceUniaxialMedium 275 5-8 PlaneWavesinLayeredMedia . . . . . . . . . . . . . . . . . . . . . . . . . 280 5-9 Plane-WavePropagation inaNegative-Index Medium . . . . . . . . . . . . . 290 5-10 NegativeRefractive-Index Lens . . . . . . . . . . . . . . . . . . . . . . . . 292 6 CartesianWaveFunctions:GuidingStructuresandResonators 313 6-1 TheDielectricPlateWaveguide . . . . . . . . . . . . . . . . . . . . . . . . . 315 6-2 GuidedWavesonImpedance Surfaces . . . . . . . . . . . . . . . . . . . . . 321 6-3 PracticalRealization ofReactiveImpedanceSurfaces . . . . . . . . . . . . . 324 6-4 Isotropic ReactiveImpedanceSurfaces . . . . . . . . . . . . . . . . . . . . . 330 6-5 TheRectangular Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . 335 6-6 Transmission-Line CircuitModelforWaveguides . . . . . . . . . . . . . . . 357 6-7 OtherModalSolutions forRectangular Waveguides . . . . . . . . . . . . . . 363 6-8 ModalExpansionofFieldQuantities . . . . . . . . . . . . . . . . . . . . . . 367 6-9 Calculus of Variations for Estimation of Resonant Frequencies in General Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 7 CylindricalWaveFunctionsandTheirApplications 404 7-1 WaveFunctionsintheCylindricalCoordinate System . . . . . . . . . . . . . 406 7-2 TheCircularDielectric Waveguide . . . . . . . . . . . . . . . . . . . . . . . 421 7-3 Green’sFunctionsSolutions forSomeCanonical Problems . . . . . . . . . . 436 7-4 ScatteringfromaMetallicCircularCylinder . . . . . . . . . . . . . . . . . . 452 7-5 IntegralRepresentation ofBesselFunctions . . . . . . . . . . . . . . . . . . 460 7-6 2-DGreen’s Function forHomogeneous Media inthe Presence ofaMetallic Wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 CONTENTS vii 7-7 AsymptoticEvaluationofaFieldDiffractedbyaMetallicWedge . . . . . . . 474 8 SphericalWaveFunctionsandTheirApplications 502 8-1 WaveFunctionsintheSphericalCoordinateSystem . . . . . . . . . . . . . . 504 8-2 WaveTransformation toSpherical WaveFunctions . . . . . . . . . . . . . . 533 8-3 MultipoleRepresentation ofSphericalWaves . . . . . . . . . . . . . . . . . 538 8-4 Plane-WaveScattering fromSpheres . . . . . . . . . . . . . . . . . . . . . . 542 8-5 WavePropagation inaConicalWaveguide . . . . . . . . . . . . . . . . . . . 553 8-6 BiconicalStructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 8-7 OtherSphericalWaveguides . . . . . . . . . . . . . . . . . . . . . . . . . . 568 A PropertiesofComplexFunctions 586 A-1 Cauchy–RiemannConditions . . . . . . . . . . . . . . . . . . . . . . . . . . 587 A-2 ConformalMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 A-3 BranchCutandBranchPoint . . . . . . . . . . . . . . . . . . . . . . . . . . 588 A-4 Cauchy’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 A-5 CauchyFormulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 A-6 PolesandResidues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 A-7 Jordan’sLemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 B MethodofSteepestDescent 592 B-1 SaddlePoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 B-2 Integration alongtheSteepestDescentPath . . . . . . . . . . . . . . . . . . 594 C UsefulVectorIdentities,Operators,andCoordinateTransformations 596 Index 601 1 Chapter Electromagnetic Fields Chapter Contents Objectives Overview, 2 Upon learning the material presented in this chapter, you 1-1 The Field Equations, 2 should be able to: 1-2 Faraday’s Law for a Moving Surface in a Time-Varying Magnetic Field, 10 1. Explain the basic physics behind Maxwell’s 1-3 Ampère’s Law for a Moving Surface equations. in a Time-Varying Electric Field, 13 1-4 Constitutive Relations: Macroscopic 2. Understand the relations between the field Properties of Matter, 14 intensities and the flux densities in a material 1-5 Kramers-Krönig Relations, 28 medium (known as the constitutive relations) 1-6 Boundary Conditions, 30 and their behavior as a function of time and 1-7 Drift Current in Metals, 34 frequency. 1-8 Hall Effect in Conducting Media, 35 1-9 Generalized Coordinates, 36 3. Incorporate complexities associated with field Chapter Summary, 44 discontinuities across abrupt boundaries between Problems, 46 dissimilar media. 4. Express the expanded form of Maxwell’s equa- tions and relevant differential operators in both standard and arbitrary coordinate systems. 1 2 Chapter1 Electromagnetic Fields Overview All material media—from an isolated atom to an entire galaxy of stars and planets—radiate electromagnetic waves, all the time! We are constantly getting bombarded by a spectrum of EM waves, including light waves, microwaves, and radio waves. Electromagnetics, the bidirectionalinteractionbetweentheelectricandmagneticfields,isatthecoreofwhatmakes electronic circuits function, communication systems transfer data, and computer systems process information. This book is about how electromagnetic fields interact with material media, including reflection by and refraction across boundaries between electromagnetically dissimilar media, transmission across boundaries, absorption by lossy media, and scattering withininhomogeneous media. Chapter 1 starts with an examination of the four famous equations known as Maxwell’s equations, in both differential and integral forms. Maxwell’s equations are then formulated for the condition when the electric and magnetic fields are in the presence of a time-varying (moving)surface,andalsousedtodefinetheconstitutivepropertiesofmaterialmedia,namely the electrical permittivity and magnetic permeability, in both homogeneous and anisotropic materials.Thesefoundationalformulationswillservetofacilitatethetreatmentsofthevarious EM-relatedtopicscoveredinforthcoming chapters. 1-1 The Field Equations Electromagnetism, asthestructure ofthewordimplies, encompasses certain lawsofphysics that define the interrelationships between the electric and magnetic fields. Electromagnetic phenomena are observed only when the two field quantities are time-varying. The nature of the interaction between the time-varying electric and magnetic fields was first discovered by Michael Faraday (1791–1867) and later formulated into mathematical expressions by James Clerk Maxwell (1831–1879). Faraday’s significant discovery was based on experimental observations and Maxwell’s formulation was based on mathematical deduction. Faraday’s extensive experimental work was motivated by the belief that every cause and effect has its converse. That is, if electricity can produce a magnetic field, a phenomenon discovered by Oersted,then,conversely, amagneticfieldshouldbeabletoproduceanelectricfield. The fundamental laws of electricity and magnetism are encapsulated by Maxwell’s equations:* ∂D ∇ H=J+ (modifiedAmpère’slaw), (1.1a) × ∂t ∂B ∇ E= (Faraday’s law), (1.1b) × −∂t ∇ D=ρ (Gauss’lawforelectricity), (1.1c) · ∇ B=0 (Gauss’lawformagnetism). (1.1d) · *JamesClerkMaxwell,ATreatiseonElectricityandMagnetism,ConstableandCo.,London,1873.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.