FOUNDATIONS FOR ALMOST RING THEORY OFERGABBERANDLORENZORAMERO January23,2018 Release 7 OferGabber I.H.E.S. LeBois-Marie 35,routedeChartres F-91440Bures-sur-Yvette e-mailaddress: [email protected] LorenzoRamero Universite´ deLilleI LaboratoiredeMathe´matiques F-59655Villeneuved’AscqCe´dex e-mailaddress: [email protected] webpage: http://math.univ-lille1.fr/˜ramero Acknowledgements WethankNielsBorne,MichelEmsalem,Pierre-YvesGaillard,LutzGeissler,W.-P.Heidorn, FabriceOrgogozo,OlafSchnu¨rerandPeterScholzeforpointingoutsomemistakesinearlierdrafts,andforuseful suggestions. 1 2 OFERGABBERANDLORENZORAMERO CONTENTS 0. Introduction................................................................. 4 1. Basiccategorytheory........................................................ 7 1.1. Categories,functorsandnaturaltransformations .............................. 8 1.2. Presheavesandlimits....................................................... 21 1.3. AdjunctionsandKanextensions............................................. 33 1.4. Specialpropertiesofthecategoriesofpresheaves ............................. 44 1.5. Finalandcofinalfunctors................................................... 52 1.6. Localizationsofcategories.................................................. 61 2. 2-Categorytheory ........................................................... 69 2.1. 2-Categoriesandpseudo-functors............................................ 69 2.2. Pseudo-naturaltransformationsandtheirmodifications........................ 82 2.3. Theformalismofbasechange............................................... 95 2.4. Adjunctionsin2-categories................................................. 106 2.5. 2-Limitsand2-colimits.....................................................128 2.6. 2-CategoricalKanextensions ............................................... 138 3. Specialcategories ........................................................... 154 3.1. Fibrations................................................................. 154 3.2. 2-Fibrations............................................................... 179 3.3. Fibrationsingroupoids..................................................... 195 3.4. Sievesanddescenttheory...................................................198 3.5. ProfinitegroupsandGaloiscategories ....................................... 213 3.6. Tensorcategoriesandabeliancategories......................................221 4. Sitesandtopoi .............................................................. 239 4.1. Topologiesandsites........................................................239 4.2. Continuousandcocontinuousfunctors....................................... 248 4.3. Morphismsofsites.........................................................256 4.4. Topoi..................................................................... 270 4.5. Fibredsites................................................................281 4.6. Fibredtopoi............................................................... 289 4.7. Localizationandpointsofatopos ........................................... 304 4.8. Algebraonatopos......................................................... 320 4.9. Torsorsonatopos ......................................................... 336 5. Stacks...................................................................... 343 5.1. Prestacksandstacksonasite ............................................... 343 5.2. Coveringmorphismsofprestacks............................................356 5.3. Localcalculusoffractions.................................................. 365 5.4. Functorialpropertiesofthecategoriesofstacks............................... 370 5.5. Sheavesofcategories.......................................................387 5.6. Stacksingroupoidsandind-finitestacks ..................................... 401 5.7. Stacksonfibredsitesandfibredtopoi........................................ 416 6. Monoidsandpolyhedra ...................................................... 434 6.1. Monoids.................................................................. 435 6.2. Integralmonoids...........................................................451 6.3. Polyhedralcones...........................................................461 6.4. Fineandsaturatedmonoids................................................. 475 6.5. Fans...................................................................... 489 6.6. Specialsubdivisions........................................................504 7. Homologicalalgebra.........................................................521 FOUNDATIONSFORALMOSTRINGTHEORY 3 7.1. Complexesinanadditivecategory........................................... 521 7.2. Filteredcomplexesandspectralsequences....................................533 7.3. Derivedcategoriesandderivedfunctors...................................... 541 7.4. Simplicialobjects.......................................................... 561 7.5. Simplicialsets............................................................. 587 7.6. Gradedrings .............................................................. 620 7.7. Differentialgradedalgebras.................................................630 7.8. Koszulalgebrasandregularsequences....................................... 635 7.9. FilteredringsandReesalgebras............................................. 649 7.10. Somehomotopicalalgebra.................................................655 7.11. Injectivemodules,flatmodulesandindecomposablemodules................. 669 8. Complementsoftopologyandtopologicalalgebra.............................. 680 8.1. Spectralspacesandconstructiblesubsets..................................... 680 8.2. Topologicalgroups.........................................................702 8.3. Topologicalrings .......................................................... 712 8.4. Topologicallylocalandtopologicallyhenselianrings.......................... 729 8.5. Gradedstructuresontopologicalrings ....................................... 735 8.6. Homologicalalgebrafortopologicalmodules.................................741 9. Complementsofcommutativealgebra......................................... 754 9.1. Valuationtheory........................................................... 754 9.2. Huber’stheoryofthevaluationspectrum..................................... 769 9.3. Wittvectors............................................................... 787 9.4. Fontainerings............................................................. 811 9.5. Dividedpowermodulesandalgebras ........................................ 821 9.6. Regularrings.............................................................. 831 9.7. Excellentrings ............................................................ 846 10. Cohomologyandlocalcohomologyofsheaves................................ 857 10.1. Cohomologyoftopoiandtopologicalspaces ................................ 857 10.2. Cˇechcohomology ........................................................ 870 10.3. Quasi-coherentmodules................................................... 883 10.4. Depthandcohomologywithsupports....................................... 893 10.5. Depthandassociatedprimes............................................... 906 10.6. Cohomologyofprojectiveschemes......................................... 919 11. Dualitytheory..............................................................937 11.1. Dualityforquasi-coherentmodules.........................................937 11.2. Cousincomplexes ........................................................ 944 11.3. Dualityovercoherentschemes............................................. 955 11.4. Schemesoveravaluationring..............................................976 11.5. Localduality............................................................. 991 11.6. Hochster’stheoremandStanley’stheorem..................................1.007 12. Logarithmicgeometry ......................................................1020 12.1. Logtopoi................................................................1020 12.2. Logschemes.............................................................1031 12.3. Logarithmicdifferentialsandsmoothmorphisms ............................1046 12.4. Logarithmicblowupofacoherentideal ....................................1060 12.5. Regularlogschemes......................................................1076 12.6. Resolutionofsingularitiesofregularlogschemes............................1094 12.7. Localpropertiesofthefibresofasmoothmorphism.........................1.113 13. E´talecoveringsofschemesandlogschemes ..................................1120 13.1. Acyclicmorphismsofschemes............................................1.120 4 OFERGABBERANDLORENZORAMERO 13.2. Localasphericityofsmoothmorphismsofschemes..........................1135 13.3. E´talecoveringsoflogschemes.............................................1147 13.4. Localacyclicityofsmoothmorphismsoflogschemes........................1167 14. Thealmostpuritytoolbox...................................................1180 14.1. Non-flatalmoststructures .................................................1180 14.2. Inversesystemsofalmostmodules .........................................1204 14.3. Almostpurepairs........................................................1.224 14.4. Normalizedlengths.......................................................1242 14.5. Finitegroupactionsonalmostalgebras.....................................1267 14.6. AlmostWittvectors......................................................1.275 14.7. Complements: locallymeasurablealgebras .................................1286 15. Continuousvaluationsandadicspaces.......................................1.303 15.1. Formalschemes..........................................................1303 15.2. Analyticallynoetherianrings ..............................................1319 15.3. Continuousvaluations....................................................1.332 15.4. Affinoidringsandaffinoidschemes........................................1.342 15.5. Adicspaces..............................................................1356 15.6. Speciallociofquasi-affinoidschemes ......................................1378 15.7. Etalecoveringsofquasi-affinoidschemes...................................1383 16. Perfectoidringsandperfectoidspaces........................................1396 16.1. Distinguishedelementsandtransversalpairs................................1.396 16.2. P-rings ..................................................................1401 16.3. Perfectoidrings..........................................................1.410 16.4. Homologicaltheoryofperfectoidrings .....................................1439 16.5. Perfectoidquasi-affinoidrings .............................................1456 16.6. Gradedperfectoidrings ...................................................1484 16.7. Perfectoidspaces.........................................................1504 16.8. Almostpurity ............................................................1522 16.9. PerfectoidTaterings......................................................1541 17. Applications...............................................................1549 17.1. Modelalgebras...........................................................1549 17.2. Almostpurity: thelogregularcase........................................1.564 References.....................................................................1.577 Itisnotincumbentuponyoutocompletethework, butneitherareyouatlibertytodesistfromit. (Avot2:21) 0. INTRODUCTION Both the focus of this monograph and its subject matter have evolved considerably in the last few years. On the one hand, the insistence on making the text self-contained (aside from a reduced canon of basic references, which should ideally contain only EGA and some parts of Bourbaki’sE´le´ments),hasresultedinaratherweightymassofmaterialofindependentinterest, thatisappliedto,butiscompletelyseparatefromalmostringtheory,andwhoserelationshipto p-adicHodgetheoryisthusevenmoreindirect. Ratherthanstemmingfromawell-thought-out plan, this part is the outcome of a haphazard process, lumbering between alternating phases of accretion and consolidation, with new topics piled up as dictated by need, or occasionally by whim, when we just branched out from the main flow to pursue a certain line of thought to its FOUNDATIONSFORALMOSTRINGTHEORY 5 logicaldestination. Nevertheless,afewthemeshavespontaneouslyemerged,aroundwhichthe originallyamorphousmagmahasbeenabletosettle,tothepointwherebynowadistinctshape isfinallydiscernible,anditisperhapstimetopauseandtakestockofitsbroadoutlines. Nowthen,wemaydistinguish: • Firstofall,aratherthoroughexpositionofthefoundationsoflogarithmicalgebraicgeom- etry,comprisingchapters6,12and13. Inevitably,ourtreatmentowesalottotheworksofKato andhisschool: ourcontributionisforemostthatofgatheringandtidyingupthesubject,which until now was scattered in a disparate number of research articles, many of them still unpub- lishedandevenunfinished. Acloserscrutinywouldalsorevealafewtechnicalinnovationsthat we hope will become standard issue of the working algebraic log-geometer : we may mention the systematic use of pointed monoids and pointed modules, the projective fan associated with a graded monoid, or a definition of α-flatness for log structures which refines and generalizes anoldernotionof“toricflatness”. Furthermore,wetooktheoccasiontorepairafewsmall(and notsosmall)mistakesandinaccuraciesthatwedetectedintheliterature. • Two other chapters are dedicated to local cohomology and Grothendieck’s duality theory. Earlyon,theemphasisherewasongeneralizations: especially,wewereinterestedinremoving from the theory the pervasive noetherian assumptions, to pave the way for our recasting of Faltings’salmostpurityintheframeworkofvaluationtheory. Applicationsoflocalcohomology tonon-archimedeananalyticgeometryfurnishedanotherinfluentialmotivation,thoughonethat hasremained,sofar,hiddenfromview. Morerecently,thenoetherianaspectshavealsobecome relevant to our project, and this latest release contains a detailed account of the most important properties of noetherian rings endowed with a dualizing complex. The latter, in turn, could be dealt with satisfactorily only after a thorough revisitation of the general theory of the dualizing complex, so that our chapters 10 and 11 can also be regarded as complementary to Conrad’s book [31] (dedicated to the trace morphism and the deeper aspects of duality) : totaling our respective efforts, it should eventually become possible to bypass entirely Hartshorne’s notes [59]which,asiswellknown,arewantinginmanyways. • Chapters 7 and 9 present (for the time being, anyway) a looser structure : a miscellanea of self-contained units devoted to more or less independent topics. However, there is at least one thread running through several sections, and whose stretch can be traced all the way back to the earliest beginnings of almost ring theory; it connects sections 7.4 and 7.5 – on simplicial homotopy theory – to a section 7.10 dedicated to homotopical algebra, then on to sections 9.6 and 9.7, which make extensive use of the cotangent complex to derive important characteriza- tionsofregularandexcellentrings,includinganup-to-datepresentationofclassicalresultsdue to Andre´, extracted from his monograph [2], and from his paper [3] on localization of formal smoothness. This homotopical algebraic thread resurfaces again in section 14.1, but there we arealreadysquarelyintoalmostringtheoryproper. On the other hand, two recent notable developments are compelling a revision of our un- derstanding of almost ring theory itself, and of its situation within commutative algebra and algebraicgeometryatlarge: • The first is Scholze’s PhD thesis [97] on perfectoid spaces, that contains both a maximal generalizationofthealmostpuritytheorem,andamajorsimplificationofitsproof,basedonhis “tilting”technique(andcompletelydifferentfromFaltings’s). However,therangeofScholze’s theory transcends the domain of p-adic Hodge theory (which was not even his original moti- vation) : to drive the point home, his thesis concludes with a clever application to the long standing weight monodromy conjecture, thus affording the unusual spectacle of a tool which was fashioned out of purely p-adic concerns, and ends up playing a crucial role in the solution ofapurely(cid:96)-adicproblem. 6 OFERGABBERANDLORENZORAMERO • The second spectacular development is Yves Andre´’s proof of the direct summand con- jecture ([4]); the latter is a deceptively simple assertion that has been a central problem in commutative algebra for the last thirty years : it asserts that every finite injective ring homo- morphism f : B → A from a regular local ring B, admits a B-linear splitting. The relevance of almost purity to this question was first surmised by Paul Roberts in 2001 (after a talk by the second author at the University of Utah), and has been widely advertised by him ever since. Andre´’s solution uses perfectoid techniques, and builds on earlier work by Bhargav Bhatt, who in[12]provedtheconjectureinthecasewhereB isessentiallysmoothoveramixedcharacter- istic discrete valuation ring and f ⊗ Q is e´tale outside a relative normal crossings divisor of Z SpecB. Moreover, Bhatt has subsequently simplified some of Andre´’s arguments and shown how the same method yields a more general “derived version” of the conjecture, for proper schemesoveranyregularring: see[13]. We see then, that almost ring theory has emancipated itself from its former ancillary role in the exclusive service of p-adic Hodge theory, and is now elbowing out a niche in the wider ecosystemofalgebraicgeometry. Thepresentreleasecompletestheprojectannouncedintheintroductionofthe6threlease: • Firstweintroduceaclassoftopologicalringsthatgeneralizetheperfectoidringsof[97];it isveryeasytosaywhata(generalized)perfectoidF -algebrais: namely,itisjustaperfectand p completetopologicalF -algebrawhosetopologyislinear,definedbyanidealoffinitetype. The p generaldefinitionissomewhatmoreinvolved,butweprovethefollowingcharacterization. For anyperfectoidF -algebraE,weconsidertheringofWittvectorsW(E),andweendowitwith p a natural topology, induced from that of E; then every perfectoid ring is a topological quotient oftheformA := W(E)/aW(E),forsuchasuitableE,andwherea ∈ W(E)iswhatwecalla distinguishedelement: seedefinition16.1.6. Moreover,justasinScholze’swork,theperfectoid F -algebra E can be recovered from A via a tilting functor that establishes, more precisely, an p equivalencebetweenthecategoryofallperfectoidringsandthatofpairs(E,I)consistingofa perfectoidF -algebraE andaprincipalidealI ⊂ W(E)generatedbyadistinguishedelement p (as it is well known, this construction is rooted in Fontaine and Winterberger’s theory of the field of norms). The distinguished ideal I represents an extra parameter that remains hidden in Scholze’s original approach : the reason is that he fixes from the start a base perfectoid field K, thereby implicitly fixing as well a distinguished element a in the ring of Witt vectors of the tilt of K, and then every perfectoid ring in his work is supposed to be a K-algebra, which – from our viewpoint – amounts to restricting to perfectoid rings whose associated distinguished ideal is generated by a. Having thus removed the parameter I, he can then also do away with Wittvectors altogether, andthe inverseto thetilting construction isobtained in[97] viaa more abstract deformation theoretic argument. This route is precluded to us, so we rely instead on direct and rather concrete Witt vectors calculations. A similar strategy has been proposed in [75], and our viewpoint can indeed be described fairly as an interpolation of those of Scholze andKedlaya-Liu,thoughweonlystudied[97]indetail. • The first three sections of chapter 16 are devoted to exploring this new class of perfectoid rings and its manifold remarkable features. The rest of the chapter then merges the theory of perfectoid rings with Huber’s adic spaces, to forge the perfectoid spaces that are the main tool forourproofofalmostpurity,whosemostgeneralformisgivenbytheorem16.8.39andapplies to formal perfectoid rings, i.e. to topological rings whose completion is perfectoid. The proof proceeds via several preliminary reductions : first, to the case of a perfectoid quasi-affinoid ring, covered by theorem 16.8.28, then – by exploiting the local geometry of adic spaces – to thecaseofaperfectoidvaluationring,whichwastreatedalreadyinourmonograph[48]. What enables here this localization argument is a basic feature of the e´tale topology of arbitrary adic spaces : the fibred category of finite e´tale coverings of the affinoid subsets of an adic space is a stack. Thelatterresultisinturnaspecialcaseofourtheorem15.7.6. FOUNDATIONSFORALMOSTRINGTHEORY 7 • We also include a detailed treatment of the foundations of the theory of adic spaces, that essentially follows [65], but contains some modest improvement : notably, the systematic use of analytically noetherian rings (borrowed from [45]) allows us to unify the two classes of topologicalringsthatHuberdealtwithseparatelyinhiswork(thestronglynoetherianringsand the f-adic rings with a noetherian ring of definition). We also point out a henselian variant of the structure sheaf that is available on the adic spectrum of any f-adic ring, with no restriction whatsoever. • Thelastchapterproposesfornowacoupleofapplications: insection17.1weintroducea classofmodelalgebrasoveranyrankonevaluationringK+ ofmixedcharacteristic(0,p),and we show that when K+ is deeply ramified, such algebras are formal perfectoid rings for their p-adictopology;hencethetheoryofchapter16immediatelyyieldsanalmostpuritytheoremfor model algebras. Likewise, section 17.2 proves an almost purity theorem for certain very ram- ified towers of log-regular rings; again, after some preliminary reductions, the proof amounts to the observation that the inductive limits of such towers are formal perfectoid for their p-adic topology. These instances of almost purity were already contained in a previous draft of our work (Release 6), where they were proven by an extension of Faltings’s method, that relied on deep results from logarithmic algebraic geometry, and also entailed the construction of certain normalized lengths for torsion modules over model algebras, and respectively over the rings occurring in section 17.2. Neither of these two ingredients intervenes any longer in the new proofs; however, we have found worthwhile to explain how model algebras arise from suitable veryramifiedtowersoflog-smoothK+-algebras,andwehavealsoretainedtheconstructionof normalized lengths for model algebras and for limits of towers log-regular rings, since they are sufficientlyinterestingintheirownright,andmightbeusefulforotherapplications(normalized lengthsfortorsionK+-modulesareexploitedin[98]). In the next release of this treatise, we shall complete chapter 17 with our account of Andre´’s work on the direct summand conjecture, and with some further applications of our theory of generalizedperfectoidrings. 1. BASIC CATEGORY THEORY The purpose of this chapter is to fix some notation that shall stand throughout this work, and to collect, for ease of reference, a few well known generalities on categories and functors that are frequently used. Our main reference on general nonsense is the treatise [15], and another goodreferenceisthemorerecent[72]. Sooner or later, any honest discussion of categories and topoi gets tangled up with some foundational issues revolving around the manipulation of large sets. For this reason, to be able to move on solid ground, it is essential to select from the outset a definite set-theoretical framework(amongtheseveralcurrentlyavailable),andsticktoitunwaveringly. Thus, throughout this work we will accept the so-called Zermelo-Fraenkel system of axioms for set theory. (In this version of set theory, everything is a set, and there is no primitive notion ofclass,incontrasttootheraxiomatisations.) Additionally, following [5, Exp.I, §0], we shall assume that, for every set S, there exists a universeV suchthatS ∈ V. (Forthenotionofuniverse,thereadermayalsosee[15,§1.1].) Throughout this chapter, we fix some universe U such that N ∈ U (where N is the set of natural numbers; the latter condition is required, in order to be able to perform some standard set-theoretical operations without leaving U). A set S is U-small (resp. essentially U-small), if S ∈ U(resp. ifS hasthecardinalityofaU-smallset). Ifthecontextisnotambiguous,weshall justwritesmall,insteadofU-small. 8 OFERGABBERANDLORENZORAMERO 1.1. Categories, functors and natural transformations. A category C is the datum of a set Ob(C)ofobjectsand,foreveryA,B ∈ Ob(C),asetofmorphismsfromAtoB,denoted: Hom (A,B) C andasusualwewritef : A → B tosignifyf ∈ Hom (A,B). Furthermore,weset C Morph(C) := {(A,B,f)|A,B ∈ Ob(C), f ∈ Hom (A,B)}. C Foranyf := (A,B,f) ∈ Morph(C),theobjectAiscalledthesourceoff,andB isthetarget off. Wealsooftenusethenotation End (A) := Hom (A,A) C C and the elements of End (A) are called the endomorphisms of A in C. We say that a pair of C elements(f,g)ofMorph(A)iscomposableifthetargetoff equalsthesourceofg. Moreover, foreveryA,B,C ∈ Ob(C)wehaveacompositionlaw Hom (A,B)×Hom (B,C) → Hom (A,C) : (f,g) (cid:55)→ g ◦f C C C fulfillingthefollowingtwostandardaxioms: • ForeveryA ∈ Ob(C)thereexistsanidentityendomorphism1 ofA,suchthat A 1 ◦f = f g ◦1 = g foreveryB,C ∈ Ob(C)andeveryf : B → Aandg : A → C. A A • Thecompositionlawisassociative,i.e. wehave (h◦g)◦f = h◦(g ◦f) foreveryA,B,C,D ∈ Ob(C)andeveryf : A → B,g : B → C andh : C → D. Clearly,itfollowsthat(End (A),◦,1 )isamonoid,andwegetagroup: C A Aut (A) ⊂ End (A) C C ofinvertibleendomorphisms,i.e. theautomorphismsoftheobjectA. 1.1.1. WesaythatthecategoryC isU-small(orjustsmall),ifbothOb(C)andMorph(C)are smallsets. WesaythatC hassmallHom-setsifHom (A,B) ∈ UforeveryA,B ∈ Ob(C). C AsubcategoryofC isacategoryB withOb(B) ⊂ Ob(C)andMorph(B) ⊂ Morph(C). TheoppositecategoryCo isthecategorywithOb(Co) = Ob(C),andsuchthat: Hom (A,B) := Hom (B,A) foreveryA,B ∈ Ob(C) Co C (with composition law induced by that of C, in the obvious way). Given A ∈ Ob(C), some- times we denote by Ao the same object, viewed as an element of Ob(Co); likewise, given a morphismf : A → B inC,wewritefo forthecorrespondingmorphismBo → Ao inCo. 1.1.2. Amorphismf : A → B inC issaidtobeamonomorphismiftheinducedmap Hom (X,f) : Hom (X,A) → Hom (X,B) g (cid:55)→ f ◦g C C C isinjective,foreveryX ∈ Ob(C). Dually,wesaythatf isanepimorphismiffo isamonomor- phism in Co. Also, f is an isomorphism if there exists a morphism g : B → A such that g ◦ f = 1 and f ◦ g = 1 . Obviously, an isomorphism is both a monomorphism and an A B epimorphism. Theconversedoesnotnecessarilyhold,inanarbitrarycategory. Two monomorphisms f : A → B and f(cid:48) : A(cid:48) → B are equivalent, if there exists an isomorphism h : A → A(cid:48) such that f = f(cid:48) ◦h. A subobject of B is defined as an equivalence classofmonomorphismsA → B. Dually,aquotient ofB isasubobjectofBo inCo. OnesaysthatC iswell-poweredif,foreveryA ∈ Ob(C),theset: Sub(A) ofallsubobjectsofAisessentiallysmall. Dually,C isco-well-powered,ifCo iswell-powered. FOUNDATIONSFORALMOSTRINGTHEORY 9 1.1.3. LetA andB beanytwocategories;afunctorF : A → B isapairofmaps Ob(A) → Ob(B) Morph(A) → Morph(B) bothdenotedalsobyF,suchthat • F assignstoanymorphismf : A → A(cid:48) inA,amorphismFf : FA → FA(cid:48) inB • F1 = 1 foreveryA ∈ Ob(A) A FA • F(g ◦ f) = Fg ◦ Ff for every A,A(cid:48),A(cid:48)(cid:48) ∈ Ob(A) and every pair of morphisms f : A → A(cid:48),g : A(cid:48) → A(cid:48)(cid:48) inA. IfF : A → B andG : B → C areanytwofunctors,wegetacomposition G◦F : A → C whichisthefunctorwhosemapsonobjectsandmorphismsarethecompositionsoftherespec- tivemapsforF andG. Wedenoteby Fun(A,B) the set of all functors A → B. Moreover, any such F induces a functor Fo : Ao → Bo with FoAo := (FA)o andFofo := (Ff)o foreveryA ∈ Ob(A)andeveryf ∈ Morph(A). Definition1.1.4. LetF : A → B beafunctor. (i) We say that F is faithful (resp. full, resp. fully faithful), if for every A,A(cid:48) ∈ Ob(A) it inducesinjective(resp. surjective,resp. bijective)maps: Hom (A,A(cid:48)) → Hom (FA,FA(cid:48)) : f (cid:55)→ Ff. A B (ii) We say that F reflects monomorphisms (resp. reflects epimorphisms, resp. is conserva- tive) if the following holds. For every morphism f : A → A(cid:48) in A, if the morphism Ff of B isamonomorphism(resp. epimorphism,resp. isomorphism),thenthesameholdsforf. (iii) If A is a subcategory of B, and F is the natural inclusion functor, then F is obviously faithful,andwesaythatA isafullsubcategoryofB,ifF isfullyfaithful. (iv) The essential image of F is the full subcategory of B whose objects are the objects of B that are isomorphic to an object of the form FA, for some A ∈ Ob(A). We say that F is essentiallysurjectiveifitsessentialimageisB. (v) WesaythatF isanequivalence,ifitisfullyfaithfulandessentiallysurjective. Remark1.1.5. Forlateruse,itisconvenienttointroducethenotionofn-faithfulfunctor,forall integers n ≤ 2. Namely : if n < 0, every functor is n-faithful; a functor F : A → B (between any two categories A and B) is 0-faithful, if it is faithful; F is 1-faithful, if it is fully faithful; finally,wesaythatF is2-faithful,ifitisanequivalence. Example 1.1.6. (i) The collection of all small categories, together with the functors between them,formsacategory U-Cat. Unless we have to deal with more than one universe, we shall usually omit the prefix U, and writejustCat. ItiseasilyseenthatCatisacategorywithsmallHom-sets. (ii) The category of all small sets shall be denoted U-Set or just Set, if there is no need to emphasizethechosenuniverse. Thereisanaturalfullyfaithfulembedding: Set → Cat. Indeed,toanysetS onemayassignitsdiscretecategoryalsodenotedS,i.e. theuniquecategory such that Ob(S) = S and Morph(S) = {(s,s,1 ) | s ∈ S}. If S and S(cid:48) are two discrete s categories,thedatumofafunctorS → S(cid:48)isclearlythesameasamapofsetsOb(S) → Ob(S(cid:48)). Noticealsothenaturalfunctor Ob : Cat → Set C (cid:55)→ Ob(C) 10 OFERGABBERANDLORENZORAMERO thatassignstoeachfunctorF : C → D theunderlyingmapOb(C) → Ob(D): C (cid:55)→ FC. (iii) Recall that a preordered set is a pair (I,≤) consisting of a set I and a binary relation ≤ onI whichisreflexiveandtransitive. Inthiscase,wealsosaythat≤isapreorderingonI. We saythat(I,≤)isapartiallyorderedset,if≤isalsoantisymmetric,i.e. ifwehave (x ≤ y andy ≤ x) ⇒ x = y foreveryx,y ∈ I. We say that (I,≤) is a totally ordered set, if it is partially ordered and any two elements are comparable, i.e. for every x,y ∈ I we have either x ≤ y or y ≤ x. An order-preserving map f : (I,≤) → (J,≤)betweenpreorderedsetsisamappingf : I → J suchthat x ≤ y ⇒ f(x) ≤ f(y) foreveryx,y ∈ I. We denote by Preorder (resp. POSet) the category of small preordered (resp. partially ordered)sets,withmorphismsgivenbytheorder-preservingmaps. Toanypreorderedset(I,≤) one assigns a category whose set of objects is I, and whose morphisms are given as follows. Foreveryi,j ∈ I,thesetofmorphismsi → j containsexactlyoneelementwheni ≤ j,andis emptyotherwise. Clearly,thisruledefinesafullyfaithfulfunctor Preorder → Cat. NoticethatifacategoryC liesintheessentialimageofthisfunctor,thenthesameholdsforCo. Indeed, if C corresponds to the preordered set (I,≤), then Co corresponds to the preordered set (Io,≤) with Io := I and x ≤ y in Io if and only if y ≤ x in I, for every x,y ∈ I. Clearly (I,≤)isapartiallyorderedsetifandonlyifthesameholdsfor(Io,≤). 1.1.7. LetA,B betwocategories,F,G : A → B twofunctors. Anaturaltransformation (1.1.8) α : F ⇒ G from F to G is a family of morphisms (α : FA → GA | A ∈ Ob(A)) of B such that, for A everymorphismf : A → B inA,thediagram: FA αA (cid:47)(cid:47) GA (1.1.9) Ff Gf (cid:15)(cid:15) (cid:15)(cid:15) FB αB (cid:47)(cid:47) GB commutes. If α is an isomorphism for every A ∈ Ob(A), we say that α is a natural iso- A morphismoffunctors. Forinstance,therulethatassignstoanyobjectAtheidentitymorphism 1 : FA → FA, defines a natural isomorphism 1 : F ⇒ F. A natural transformation FA F (1.1.8)isalsoindicatedbyadiagramofthetype: F(cid:31)(cid:31)(cid:31)(cid:31) (cid:41)(cid:41) A (cid:11)(cid:19) α(cid:53)(cid:53) B. G 1.1.10. The natural transformations between functors A → B can be composed; namely, if α : F ⇒ Gandβ : G ⇒ H aretwosuchtransformations,weobtainanaturaltransformation β (cid:12)α : F ⇒ H bytherule: A (cid:55)→ β ◦α foreveryA ∈ Ob(A). A A Withthiscomposition,Fun(A,B)isthesetofobjectsofacategorywhichweshalldenote Fun(A,B).
Description: