ebook img

Foundations and Applications of Variational and Perturbation Methods PDF

351 Pages·2009·3.015 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundations and Applications of Variational and Perturbation Methods

F A OUNDATIONS AND PPLICATIONS OF V P ARIATIONAL AND ERTURBATION METHODS No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. F A OUNDATIONS AND PPLICATIONS OF V P ARIATIONAL AND ERTURBATION METHODS S. RAJ VATSYA Nova Science Publishers, Inc. New York Copyright © 2009 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. For permission to use material from this book please contact us: Telephone 631-231-7269; Fax 631-231-8175 Web Site: http://www.novapublishers.com NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA Vatsya, S. Raj. Foundations and applications of variational and perturbation methods / S. Raj Vatsya. p. cm. Includes bibliographical references and index. ISBN 978-1-60741-414-8 (eBook) 1. Perturbation (Mathematics) 2. Perturbation (Quantum dynamics) 3. Variational principles. I. Title. QA871.V285 2009 515'.392--dc22 2008050554 Published by Nova Science Publishers, Inc. (cid:31)(cid:31)(cid:31)(cid:31) New York (cid:0) CONTENTS Preface vii Acknowledgements ix I. Foundations 1 Chapter 1 Integration and Vector Spaces 3 1. I. Preliminaries 3 1. II. Integration 6 1. III. Vector Spaces 15 Chapter 2 Operators in Vector Spaces 23 2.I. Operators in Banach Spaces 23 Chapter 3 Variational Methods 63 3.I. Formulation 63 3.II. Convergence 74 3.III. PadÉ Approximants 99 3.IV. Monotonic Convergence 118 Chapter 4 Perturbation Methods 127 4.I. Perturbed Operator 127 4.II. Spectral Perturbation 136 4.III. Spectral Differentiation 165 4.IV. Iteration 173 II. Applications 181 Chapter 5 Matrices 183 5.I. Tridiagonal Matrices 183 5.II. Structured Matrices 193 5.III. Conjugate Residual-Like Methods 202 Chapter 6 Atomic Systems 215 6.I. Preliminaries 215 6.II. Eigenvalues and Critical Points 216 vi Contents 6.III. Scattering 223 Chapter 7 Supplementary Examples 251 7.I. Ray Tomography 251 7.II. Maxwell’s Equations 254 7.III. Positivity Lemma for the Elliptic Operators 264 7.IV. Transport and Propagation 289 7.V. Quantum Theory 310 References 327 Index 331 PREFACE Variational and perturbation methods constitute the basis of a variety of numerical techniques to solve a wide range of problems in the physical sciences and applied mathematics. Many of the practicing researchers have limited familiarity with the mathematical foundations of these methods. This literature is scattered and often concentrates on mathematical subtleties without associating them with the physical phenomenon, limiting its accessibility. Another impediment to the dissemination of the rigorous results is a lack of examples illustrating them. Computationally oriented texts present them as ad hoc, problem specific procedures. Present text is aimed at presenting these and other related methods in a unified, coherent framework. Pertaining results, e.g., the convergence and bound properties, are obtained rigorously and illustrated by copious use of examples drawn from various areas of physics, chemistry and engineering disciplines. The material provides sufficient information to researchers in scientific disciplines to apply the mathematical results properly and to mathematicians who may wish to use such techniques to develop solution schemes for scientific problems or analyze them for their properties. Out of a number of mathematical subtleties addressed in the material covered, one deserves mention. Processes in the interior of a physical system respond in a fundamental way to the conditions imposed at its boundary, which are often experimentally controllable or determinable. In the models representing such phenomena, the boundary conditions determine the mathematical character of equations in an equally fundamental way. For the methods to solve such equations to be well founded and reliable, it is essential that these mathematical properties be adequately taken into account. Effort is made to explain the impact of this and other similar conditions on the mathematical properties, methods and physical phenomena. While the mathematical rigor is not compromised, the material is kept focused on solving physical problems of interest. To this end, only the essential areas of abstract mathematics are covered and excessive abstraction is avoided. Mathematical concepts are developed assuming the background of the reader expected of an advanced undergraduate student in science and engineering programs. The concepts and their contents are clarified with examples and comments to facilitate the understanding. This book developed from the notes for an interdisciplinary course, “Applied Analysis,” which the author developed and taught at York University. The course attracted advanced undergraduate and graduate students from the physical sciences and mathematics departments. The material was continuously updated in view of the new developments. Some non-standard applications of the variational and perturbation methods that have not yet been viii S. Raj Vatsya included in the instructional texts and courses have also been included. Effort is made to render this a suitable textbook for a course for the students with background in scientific and mathematical disciplines, as well as a suitable reference item for researchers in a broad range of areas. The material can also supplement other courses in approximation theory, numerical analysis theory and functional analysis. First two chapters concentrate on the mathematical topics needed for later developments. This material is introduced and developed from commonly familiar grounds for accessibility, maintaining the essentials of the concepts. These topics are covered in standard texts. Therefore the details and the proofs are provided only when considered instructive. A reader familiar with them may skip to the later chapters and refer back to these as needed. A reader interested in exploring these topics in more detail may consult standard reference material. While a vast amount of suitable literature is available, the following classic texts are still quite prolific sources of information: M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, Am. Math. Soc. New York (1932); F. Riesz and B. Sz.-Nagy, Functional analysis, Translated by L. F. Boron, Ungar, New York (1955); and T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York (1980); in modern analysis, and R. Courant and D. Hilbert, Methods of mathematical physics, Interscience, New York (1953); in classical analysis. Chapters 3 and 4 cover detailed mathematical foundations of the variational and perturbation methods. Remainder of the text is devoted to worked out examples from various areas of physics, chemistry and engineering disciplines. The examples illustrate the techniques that can be used to select a suitable method and verify the conditions for its validity and thus, establish its reliability. Algebraic details and numerical applications to specific problems are covered extensively in the existing literature. Applications part in the present text covers the ground between the computational aspects of the methods and the results developed in foundations part, where there is a dearth, partly due to a lack of the organized foundational literature. The material is organized with mathematical classification, each class applicable to a variety of problems. Applications part concentrates on concrete problems and reduces each to one of the topics studied in the foundations part, thereby developing a solution scheme and illustrating the applications of the results. The material is presented in precise terms unless descriptive text is deemed necessary for explanations. Supplementary remarks are included for further clarifications and to isolate parts of the text for later reference. An argument is described in detail the first time it is needed. If a similar argument is used for other proofs later, it is outlined relatively briefly to avoid excessive duplication. A term defined for the first time is bolded. Proofs and definitive statements such as the remarks and examples, in danger of confusion with other text, are concluded with a thick period• S. R. Vatsya Formerly: S. R. Singh August 2008 ACKNOWLEDGEMENTS The author is grateful to several researchers, particularly Professors Huw Pritchard and John Nuttall, for bringing numerous problems to his attention. Thanks are due to them and his students for persistently encouraging him to write a text covering this material. Also, constructive advice of Dr. Mile Ostojic and Shafee Ahamed was greatly appreciated.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.