Flora xxx (xxxx) xxx–xxx ContentslistsavailableatScienceDirect Flora journal homepage: www.elsevier.com/locate/flora Review ☆ Fossil leaf traits as archives for the past — and lessons for the future? Anita Roth-Nebelsicka,⁎, Wilfried Konradb,c aStateMuseumofNaturalHistoryStuttgart,Rosenstein1,D-70191Stuttgart,Germany bDepartmentofGeosciences,FacultyofScience,UniversityofTübingen,Hölderlinstrasse12,D-72074Tübingen,Germany cTechnicalUniversityofDresden,InstituteofBotany,ZellescherWeg20b,D-01062Dresden,Germany ARTICLE INFO ABSTRACT EditedbyHermannHeilmeier Correlationsofleaftraitswithenvironmentalconditionsarewidelyusedforreconstructionofpalaeoclimateand Keywords: toanalysetheevolutionoflandplants.Evaluationofclimate-dependentleaftraitsoffossilflorascanpotentially Palaeoclimate contributetoourunderstandingoflong-termresponsesofvegetationtochangingclimate.Inthiscontribution, CO2 basicaspectsandmethodsofpalaeoclimatereconstructionbyfossilleafmorphology,suchasleafmarginana- Leafmarginanalysis lysisandCLAMP,arepresentedanddiscussedwithrespecttorecentresultsonfunctionalleaftraits.Alsoad- Stomataldensity dressed is the use of stomatal data (density and size) for obtaining palaeoatmospheric CO2 as well as the Gasexchange (possible)interferenceofCO2withotherabioticenvironmentalparameters,leadingto“non-analogueclimates” Leaftemperature Leafheatdissipation whichcannotbefoundtoday.ThereismuchevidencethatCO2,asanessentialfactorforgasexchangeand thereforepalaeoecophysiology,actedasanimportantdriverinlandplantevolution.Forinstance,elevatedCO2 levels of the past and present are assumed to affect leaf shape evolution, because stomatal conductance is negativelycorrelatedwithatmosphericCO2therebyaffectingleafheatdissipation.Thistopicisaddressedin detailasanexemplarycaseoftheinterferenceofmultipleenvironmentalparameters.Resultsofagasexchange modelwithcoupledheattransferindicatethattheeffectofelevatedCO2onleaftemperaturemaybeminor,at leastwhenwatersupplyisnotlimited.Thisexampledemonstratesthatecophysiologicalanalysesoftrait–cli- materelationshipscancontributetoidentifyingadaptivefeaturesofleafarchitectureandtoevaluatepredictions intothefutureaswellasintothepast. 1. Introduction afunctionalbasisthatremainedconstantfromthepasttothepresent (Jordan, 2011). If so, then, consequently, these may be extrapolated Leavesastheprimaryorgansofphotosynthesisaredirectlyexposed intothefuture.Furthermore,evaluationofclimate-dependentleaftraits to the atmosphere, performing controlled gas exchange under con- offossil florascould contributetoour understandingoflong-term re- stantlyvaryingconditions.Successfulandeconomicphotosynthesisisa sponsesofvegetationtochangingclimate. basicnecessityofplantlife,leadingtoahighselectivepressureonleaf Inthiscontribution,variousaspectsofclimatesensitivityofleaves function. Unsurprisingly, leaves are sensitive to their environment in are considered within the framework of their use as palaeoclimate variousways.Thesecompriseinstantresponsestoexternalstimuli,such proxy and related problems of extrapolating extant trait–climate cor- as opening or closing of stomata, as well as correlations between relations into the past. Although a leaf functional basis is generally macromorphological/micromorphological traits and environmental assumed for trait–climate correlations, a clear causal explanation is parameters.Correlationsoftraitswithenvironmentcanbeinterspecific lacking for many of them. Recognizing ecophysiological processes aswellasintraspecific,withthelatterincludingleafplasticitywithin which drive trait–climate correlations is, however, the basis for iden- oneindividual(forthetopicofplasticity,seealsoPugiellietal.,within tifying and explaining adaptations to environment on various levels, this volume). Morphological responses of leaves to environment ob- fromplasticitytoevolutionaryadaptationand(abiotic)environmental served and documented for recent vegetation are the basis for using filtering.Therefore,focuswillbeontraitsforwhichclearphysicaland morphologicaltraitsoffossilleavesas“climatearchive”.Bydoingso,it physiological explanations for their correlations with environment istacitlyassumedthatcorrelationsbetweenleaftraitsandclimatehave exist.Theseareleafsizeanditsinterrelationshipswithtemperatureand ☆Thisarticleispartofaspecialissueentitled:“Functionaltraitsexplainingplantresponsestopastandfutureclimatechanges”publishedatthejournalFlora 254C,2019. ⁎Correspondingauthor. E-mailaddresses:[email protected](A.Roth-Nebelsick),[email protected](W.Konrad). https://doi.org/10.1016/j.flora.2018.08.006 Received20March2018;Receivedinrevisedform5July2018;Accepted1August2018 0367-2530/ © 2018 Elsevier GmbH. All rights reserved. Please cite this article as: Anita Roth-Nebelsick and Wilfried Konrad, Flora, https://doi.org/10.1016/j.flora.2018.08.006 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx transpirationandstomataldensityanditscorrelationwithatmospheric numberofenvironmentalparameters(Spiceretal.,2009;Wolfe,1993; CO2concentration.Theseinterrelationshipswillbeconsideredinmore WolfeandSpicer,1999;Yangetal.,2015,seeKunzmannetal.,inthis detail, including a brief description of mechanistic modelling ap- volume, for an example of applying LMA and CLAMP to a fossil as- proaches which allow for evaluating putative functional hypotheses semblage).Therearerecenteffortsforfurtheradvancedandsophisti- (Jordan,2011).Animportantaspectisthatatraitcanbeinfluencedby cated approaches to calculate climate parameters from leaf traits (Li morethanoneenvironmentalparameter,makingitdifficulttoextract etal.,2016).Theseapproaches,however,seeknottoexplainorinclude singleclimatesignals.AnexampleisthepossibleeffectofCO2onleaf possiblefunctionalbackgroundsoftrait–climaterelationships.Rather, size, via its effect on stomatal conductance and — therefore — eva- theobservedpositiveornegativecorrelationsoftraitswithclimateare porativecooling. The lastpart ofthis contribution isdedicatedtoex- usedinapurelyempiricalstatisticalway.Itshouldalsobeemphasized ploringthisinterference,asanexemplarystudyofhowtheinteraction thatneitherLMAnorCLAMPrequirestaxonomicidentificationoffossil ofdifferentparameterscouldbeunravelledbyathoroughecophysio- leaves. Both methods can be applied with the “morphotype” concept logicalanalysis. whichisbasedoncharacterizingcomponentsofafossilflorabytheir It should be emphasized that this contribution focuses on angios- morphologicaltraits(DiMichele,1983;Johnson,1989).Thisallowsfor perms, because many studies are based on angiosperm leaves which includingandanalyzingfossilsforwhichnocleartaxonomicaffiliation showparticularlystrongandmanifoldresponsestoclimate.Aftertheir tomoderntaxaisavailable. appearanceanddiversification,angiospermshadasubstantialinfluence LMAusescategoricaldata(presence/absenceofteethatthemargin) onglobalecology,withtheirleavesplayingamajorrole(Boyceetal., andCLAMPisalsomainlybasedonthecategoricaldatatype.Recently, 2009;BoyceandLee,2011;BoyceandZwieniecki,2012).Althoughthe theadvantagesofcontinuousleaftraitswereputforward(Huffetal., majorityofstudiesdedicatedtorelationshipsbetweenenvironmentand 2003;Royeretal.,2005).Asubstantialamountofinformationcanbe leaf traits focus on angiosperms, there are also data available which conveyedbyquantitativeleafshapeparameters,suchasroundnessor showthatvarioustrendsfoundforangiospermleavesarealsovalidfor theareacoveredbymarginalteeth(Peppeetal.,2011). otherplantgroups,suchasferns(KarstandLechowicz,2007;Sessaand It should be emphasized that biological palaeoclimate proxies Givnish,2014). (=indirectindicatorsprovidingapproximatevaluesfortheparameter ofinterest),suchastraitsoffossilplantremains,comewithacertain 2. Macromorphologicalleaftraitsassourceforpalaeoclimate errormargincausedbyvariousreasons.Onereasonforpossiblebiasis reconstruction that taphonomic processescan distortthe compositionof theoriginal flora in a fossil assemblage (Astorga et al., 2016; Campbell, 1999; Probablythemostpopular—andhistorical —leaftrait-basedin- Ferguson, 1985, 2005; Gastaldo et al., 1996; Greenwood, 2005; dicator of climate is the leaf margin. The approach is usually termed Kennedyetal.,2014;Spiceretal.,2011;Steartetal.,2002).Another Leaf Margin Analysis (LMA) (Wilf, 1997). Globally, the proportion of basicaspectisthatarichassemblageofwell-preservedplantfossilsis taxashowingtoothedleafmarginsisnegativelycorrelatedwithmean usuallydependentonthepresenceofawaterbodyprovidingconditions annual temperature (MAT) (Bailey and Sinnott, 1916; Royer et al., which delay or prevent decay. Many fossil localities thus represent 2012).Thereismuchdiscussiononthefunctionalbackgroundofthis habitats with a high groundwater table, such as riparian systems or climate-dependenttrait.Itwassuggestedthatmarginalteeth—which swampsinwhichwatersupplyofthelocalvegetationislessdependent areoftenabletoactashydathodes—allowforpressurereleaseduring onprecipitation.Thisisoneofthereasonsforthenotoriousdifficultyto spring root pressure to avoid mesophyll flooding (Feild et al., 2005). approximateprecipitationonthebasisoffossilplants. Accordingtoanotherhypothesis,toothedmarginsallowforearlyma- Another plant-based method is the Coexistence Approach (CA) turationofleafmesophyllatthetipregionsandthereforeforanearly (MosbruggerandUtescher,1997)(forarecentdiscussionandstate-of- start of photosynthesis at these spots during springtime (Baker-Brosh the-art representation see Utescher et al., 2014), whose operational andPeet,1997).Thishypothesisissupportedbythefindingthattooth principle is analogous to the Climate Envelope concept: climate re- areaincreaseswithdecreasingMAT(Peppeetal.,2011).However,not construction is based on the realized abiotic environmental niches of all taxa featuring toothed leaf margins show early photosynthesis at the nearest living relatives (NLR) of the considered fossil taxa. Max- theirmarginalteeth(Baker-BroshandPeet,1997),andtherearealso imumandminimumvaluesofvariousclimateparametersarederived other explanations for the negative correlation between frequency of whichaccommodatetheenvironmentaldemandsof(ideally)allNLRs. taxa with toothed margins and MAT (Edwards et al., 2016; Givnish, Technically, this corresponds to that interval which provides the 1979;GivnishandKriebel,2017). overlapping region for the climate ranges of the NLRs. In contrast to The occurrence of taxa with toothed leaf margins in a flora has a leaf-traitbasedmethodssuchasCLAMPandLMA,theCArequiresre- substantialphylogeneticbackground.Shiftsinproportionsoftaxawith liabletaxonomicidentificationofthefossilplants,otherwiseitwould entireortoothedmarginsarelargelyduetospeciesmigrationbywhich beimpossibletorecognizeNLRs.Furthermore,CAcanbeappliedtoall toothed(mostlydeciduous)anduntoothed(mostlyevergreen)taxaare kindsoffossilplantparts,suchaswoodorpollen,andnotjustleaves. exchanged against one another (Hinojosa et al., 2011; Little et al., Howistheperformanceofleaf-basedpalaeoclimatereconstruction, 2010), making biogeography an important aspect in global distribu- compared with other approaches? Quite often, LMA, CLAMP and CA tionsoftoothedvs.untoothedplantgroups.Thismeansthatthereisno showsimilartrends,butdifferenceswithrespecttotheabsolutevalues globally valid calibration possible since biogeographical history and are quite common. For example, evaluation of plant-based palaeocli- limitations(suchasmigrationbarriers)substantiallyinfluencethefinal matedataforanextendedstratigraphicrange,fromtheEocenetothe frequency of taxa with and without toothed margins. Calibration Pleistocene, for the Bohemian Massif (Czech Republic) and adjacent equations which allow for calculating MAT from extant data sets are fossilsitesinGermanyreveals,firstly,thattheCAreturnsamuchmore thereforeregionallylimited,andvarioussite-relateddatasetsexistso equableMATthanLMAorCLAMP,and,secondly,thatMATcalculated far(Greenwoodetal.,2004;Peppeetal.,2011). by leaf-based methods is often several degrees below the CA-derived Besides the leaf margin, there are other macroscopic leaf traits value(TeodoridisandKvaček,2015). whichshowcorrelationswithenvironmentalfactors.CLAMP(Climate In the case of the CA, the necessity to reliably identify the fossil Leaf Analysis Multivariate Program) is a multivariate approach based taxon as well as its correct NLR is often a formidable task (Utescher onvarious(currently31)leaftraits,suchasshapeoftheleaflaminaor etal.,2014).However,eveniftaxonomicidentificationiscorrect,there the leaf apex, presence of a drip tip or ratio between leaf length and maybesubstantialdifferencesbetweenthefossiltaxonanditsextant width.Thevariouscorrelationsofthesetraitswithclimatefactorsare counterpart (Jordan, 2011). The frequent occurrence of “outliers” then used for a statistical multivariate approach which returns a whicharetaxanotfittingintoaclimateintervalenclosingallspecies,or 2 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx even the impossibility to identify suchan interval may be dueto dif- leaves,therebytendingtoalowLMarea,shouldbeabletocopebetter ferent climate demands of fossil and extant representative (Utescher with low CO2 (Loreto et al., 1992; Medlyn et al., 2011). More robust etal.,2014).Anotherproblemisrepresentedbythecircumstancethat and dense leaves showing a higher LMarea would particularly benefit combinations of environmental parameters may have occurred in the from high CO2 (McElwain et al., 2016; Niinemets et al., 2011). This pastwhichdonolongerexisttoday(“non-analogueclimate”,seealso differential effect of CO2 on the LMarea spectrum is caused by differ- Section4.2)(WilliamsandJackson,2007). encesinleafinternalconductance:highLMarealeavestendtoalower Apart from problems which are specific to plant-based proxies, leafinternalconductanceforCO2thanlowLMarealeaves,andtherefore discussing and evaluating climate and climate-dependency of plant the latter can cope better with low atmospheric CO2 whereas leaf in- traitsonthebasisofthoseenvironmentalparameterswhichwereob- ternal CO2 transport is promoted for robust and thick leaves under tainedbyexactlythesetraitscarriesthedangerofacircularargument elevated CO2. This would possibly lead to a CO2-dependent shift in when no other independent evidence for the environment exists. It is distributionandfrequencyofdeciduous/evergreentaxa. generally advantageous to combine different proxies, allowing for Additionally, CO2 (and various other environmental factors) may comparisonbetweenpalaeoclimateinformationderivedbyplantsand directly influence LMarea in individual plants via plasticity (Poorter those derived by other methods (Jordan, 2011). For example, magni- etal.,2009).WhenexposedtodifferentlevelsofCO2,LMareaisslightly tudeofMATandminimumannualtemperaturecanbeapproximatedby negativelycorrelatedwithCO2(AinsworthandRogers,2007;Poorter presenceofcertainanimals,suchascrocodiles(Markwick,1998).Other etal.,2009;Temmeetal.,2015).HigherLMAareaunderelevatedCais, methodsarebasedonisotopecompositionofanimalremains,suchas however,notnecessarilycausedbystructuralleafchanges,butcanalso teeth (Kohn and Cerling, 2002; Tütken and Absolon, 2015). For ex- be due to a higher amount of nonstructural carbohydrates (such as ample, palaeotemperature reconstruction of the Messel pith based on starchorsolublesugars)andthereforereflectchangesinthecarbohy- 18OfromenamelobtainedfromPropalaeotherium(afossilhippomorph) dratesource–sinkratio,suchasincreasedphotosynthesis(Poorteretal., teethcoincidessatisfactorilywithtemperaturevaluesderivedbyusing 2009). plant fossils (Grein et al., 2011). However, it is often not possible in LMAareaisnottheonlytraitwhichisinfluencedbyCO2.SinceCO2is practicetocombinedifferentproxies,becausefossilsitesfrequentlydo thesubstrateofphotosynthesis,andCO2uptakeanditsfixationisthe notprovidedifferenttypesoffossilorganismsorothermaterialsuitable central element of leaf function, changing CO2 levels are expected to forenvironmentalreconstruction. widelyaffectleafecophysiologyandthereforeleaftraits.Atmospheric CO2changedprofoundlyduringEarth'shistory,withstrongvariations 3. Fossilleafeconomics throughout the Cenozoic, the post-Cretaceous time period which shaped recent biomes and ecosystems (Beerling and Royer, 2011). In As noted above, the functional aspects of many leaf traits whose thefollowingsections,basicaspectsofrelationshipsbetweenleaftraits correlationswithenvironmentalparametersareusedforpalaeoclimate offossilplantsandCO2willbeconsidered. research are unknown or under debate. Furthermore, fossil leaf traits appeartoberestrictedtomorphologicaltraits,seeminglytheonlykind 4. LeaftraitsandCO2 oftraitaccessiblefromfossilmaterial.Afunctionalleaftraitofspecial interestinrecentresearchisleafmassperarea,LMarea,thedryweight 4.1. StomatarespondtoCO2—andcanbeusedasproxydataforthepast ofaleafrelatedtoitsarea,alsoexpressedasitsreciprocal,specificleaf area (SLA). LMarea correlates with life life span (LLS) and mass-based Duringthelastyears,alargewealthofdataontheresponseofplant photosynthesisandiscentralforexplainingleaffunctionwithrespect gas exchange to CO2 was collected, mostly with respect to elevated toleafeconomics(Reich,2014;Reichetal.,1999;Wrightetal.,2005, levels, such as targeted by the FACE (Free Air Carbon dioxide 2004).Althoughitisnaturallyimpossibletodirectlyobtaintheweight Enrichment) campaign (Ainsworth and Long, 2005; Battipaglia et al., ofafossilleaf,amethodforindirectapproximationofLMareafromfossil 2013;Norbyetal.,2016;NorbyandZak,2011).Variousstudiescon- leaves was introduced (Royer et al., 2007). This method is based on sideredalsoplantresponsestosubambientCO2(Bunce,2007;Gerhart mechanicalconsiderations,andapproximatesLMareafrompetiolewidth andWard,2010;Pintoetal.,2014;Temmeetal.,2013).Asonegeneral andlaminaareaofthefossilleafspecimenonthebasisofaquitelarge result,stomatalconductance,g,isnegativelycorrelatedwithCO2,with calibrationsetobtainedfromextantleaves. plants adapting stomatal opening to atmospheric availability of CO2. LLS is positively correlated with length of the growing season Thenegativeg–CO2relationshiprepresentsoneofthevariousresponses (Givnish, 2002). Due tothe relationship between LLS and LMarea,the ofthestomatalcontrolsystemtoenvironmentalparameters,butane- latter parameter could therefore potentially deliver growing season gativecorrelationbetweenstomataldensity(SDorν)andCO2wasalso length, thereby complementing other palaeoclimate proxies. For ex- observed,forherbariummaterial(Miller-Rushingetal.,2009;Peñuelas ample,LMareadataforvariousfossilassemblagesfromCentralEurope and Matamala, 1990; Woodward, 1987) as well as experimentally from the Paleocene to the Oligocene confirm general palaeoclimate (Beerling et al., 1998; Haworth et al., 2011; Hincke et al., 2016; resultsindicatingwarmandequableclimateduringtheEocene(Figs.1 Kürschner,1996;Wagneretal.,1996).Contrarytog,stomataldensity and2).However,meanLMareainalocalvegetationaswellasLLSare represents a morphological trait and can as such be determined from affectedalsobyotherenvironmentalfactors.Particularly,LMareashows fossil material, if the cuticle of a fossil leaf is properly preserved anegativecorrelationwithsoilnutrients(McDonaldetal.,2003)and (Fig. 3). Therefore, quite soon after the publication of Woodward increasesalsowithdecreasingprecipitation(Wrightetal.,2005)(foran (1987),SDadvancedtoawide-spreadtoolforpalaeoatmosphericCO2 exampleoftheimpactofnutrientavailabilityonplanttraits,seeDiéme reconstruction.Inthefollowing,atmosphericCO2concentrationwillbe etal.,thisvolume).Particularlyavailabilityofsoilnutrientsiscurrently termedCa. not accessible for past habitats (apart from exceptional settings like AstheSD–Carelationshipisspecies-dependent,theoriginalconcept peat; Sluiter et al., 2017), a circumstance which adds to the un- was to identify extant species whose existence extended to the time certainties of plant-based climate reconstruction. Despite these cir- period of interest and to erect calibration curves of their SD–Ca re- cumstances, fossil LMarea data can potentially provide palaeoclimate lationship, either by herbarium material or from experiments. These reconstruction data and contribute basic information on ecophysiolo- calibrationcurvesarethenusedtocalculateCafromfossilSDdata(or gicalfeaturesoffossilplants(Roth-Nebelsicketal.,2017;Royeretal., fromstomatalindexdatarepresentingtheratiobetweenepidermalcell 2007). density and stomata density) (Kürschner et al., 1998; Poole and AnotherparameterwhichmayinfluenceLMareaisatmosphericCO2 Kürschner, 1999). Naturally, this strategy becomes increasingly diffi- concentration (Ca). One line of reasoning is that thin and delicate cult to pursue with increasing stratigraphic age. Plant taxa of the 3 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx Fig.1.TwoleavesofPlatanusneptuni(Ettingshausen)Bůžek,Holý etKvaček,fromtwodifferentlocalities,asanexampleforfossil leaf material which allowed for determination of LMarea. (A) P. neptunifromthefossilsiteRauenberg(StateMuseumofNatural History Stuttgart, SMNS P 1953/36) (Kovar-Eder, 2016). Strati- graphicage:Oligocene,Rupelian,about32to29.6millionyears old. (B) P. neptuni from the fossil site Kučlín, Czech Republic. Stratigraphicage:Eocene,Bartonian,about39.2to37.4million yearsold(NationalMuseumPrague,NMPG09792)(Teodoridis andKvaček,2015). Fig. 3.Abaxial cuticle of the fossil angiosperm taxon Rhodomyrtophyllum re- ticulosumfromtheMesselpit,about48million yearsold(Ypresian,Eocene) (CourtesyMichaelaGrein,Übersee-MuseumBremen,Germany).Bar:50μm. Fig.2.DataformeanLMareaofvariousfossilassemblagesfromCentralEurope, fromthePaleocene,EoceneandOligocene.Theboxplotsspanthe50%inter- intotheplantisentirelyprocessedbyphotosynthesis,andassimilation quartile.Thelineswithintheboxesindicatethemedianvalues.The“whiskers” rateAisrelatedtoleafconductancegvia mark the highest and lowest values. Outliers are drawn as filled circles. Differences are statistically significant (for more detail, see Traiser et al. A=g(Ca Ci) (1) (2018)). Note: expression log10(LMarea) (along ordinate axis) is to be under- stood as the common logarithm of the numerical value of LMarea, provided Furthermore,theFarquharmodelofC3–plantphotosynthesis(Farquhar LMareaisgiveninunitsofg/m2. et al., 1980) postulates a dependence of A on Ci and on biochemical parameters Quaternary, for example, are almost identical to recent taxa, offering A=q Ci R excellent opportunities to study Ca from fossil material (Beerling and Ci+K d (2) Rundgren,2000;RundgrenandBeerling,1999;RundgrenandBjörck, 2003; Steinthorsdottir et al., 2013; Wagner et al., 2004). For time withq:carboxylationlimitedbyRubisCOorRuBP,K:parametercon- periods older than the Miocene, suitable species become increasingly tainingMichaelis–Mentenconstantsofcarboxylationandoxygenation, scarce,leavingsomefewtaxawithalonghistory(“livingfossils”). Γ: CO2 compensation point, and Rd: mitochondrial respiration rate in Anotherstrategyistouseplantgasexchangemodellingasbasisfor the daylight as biochemical parameters of photosynthesis (Farquhar calculatingCafromfossilstomataldata.Thisopensuppossibilitiesfor et al., 1980; Konrad et al., 2008). These parameters depend on tem- an ecophysiological model framework as basis for deriving palaeocli- perature(Bernacchietal.,2003;Konradetal.,2008). matefromproxydata,andwillbepresentedinthefollowinginmore The diffusion law provides also a relation between stomatal con- detail—althoughbriefly—asanexemplarycase.Alldifferentmod- ductance and leaf anatomy (Parlange and Waggoner, 1970; Konrad elling approaches exploit two relations. The first one, Fick's Law of etal.,2008), dthiffeiursicoonn,csetnattreastitohnatdtihffeeflreunxceofbCeOtw2emenoleactumleosspinhteorele(aCvae)saisnddrlievaefnibny- g= ast2DCO2 terior(Ci).Understationaryconditions,thenetfluxofCO2–molecules dbl+dasnaass ast+dst (3) 4 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx das, τas, nas are thickness, tortuosity, and porosity of the assimilation Results of CO2 reconstruction with fossil stomata are quite con- layer, ast, dstare cross-sectionalarea (parallel totheleaf surface)and sistent when compared to CO2 values from ice cores (Franks et al., depthofthestoma,andνisthestomataldensity.Alaminarboundary 2014).However,icecoredataareonlyavailableforaboutonemillion layerofairdevelopsaroundaleafwhosethicknessdependsonleafsize yearsintothepast(Fischeretal.,2013),andtheerrormarginofsto- landwindspeedvwind,approximatelyaccordingtodbl≈4×10−3m/ mata-basedCO2reconstructionwillincreasewhengoingfurtherbackin s l . time,duetohigheruncertaintyofphotosynthesisparametersaswellas vwind Thebasicmodelideaamountstoderiving—inafirststep—from environmentalparameters.Acomparisonofstomata-derivedCO2with results of other proxy sources (such as Boron isotopes or alkenon-de- (1) and (2) a relation between g and Ca and to use this result in (3) rived 13C from marine plankton) reveals various consistent trends which can then be solved for Ca. Assuming that the photosynthesis (Beerling and Royer, 2011). However, there are also inconsistencies, parameters q, K, Γ and Rd are known from extant relatives, the two particularlyduringatimeofstrongclimatechange,namelytheEoce- equations(1)and(2)containfourunknowns,g,Ca,AandCi.Thus,a ne–Oligocene when global cooling terminated the ice-free hothouse third relation is required in order to extract the desired relation be- conditions, marked by the Oi-1 glaciation event (Coxall and Wilson, tweengandCa. Atthispoint,themodelapproachesdivergesomewhat: 2011; Coxall et al., 2005). There is various evidence for high CO2 duringtheEocene,withamoreorlesscontinuousdeclinetowardsthe (i) The optimization models include the dependency of stomatal Oligocene. A decrease in Ca would thus accompany global cooling (Royer et al., 2012). Stomata-based results for the Eocene are often aperture on environmental parameters, particularly humidity and substantiallylowerandatoddswithotherproxies(Anagnostouetal., temperature and postulate optimized water use (Konrad et al., 2016;Maxbaueretal.,2014;Steinthorsdottiretal.,2016),despitethe 2008).Thestrategyofplantstogainamaximumofcarbonwitha given amount of available water (Berninger et al., 1996; Cowan, circumstance that various Eocene Ca data originally reported as ex- tremely high were meanwhile revised and became more moderate 1977) can be translated into the mathematical language of opti- (Breeckeretal.,2009;Jagnieckietal.,2015).Thesedisparitiesamong mization principles. Several of them were successfully applied on various occasions (Aalto et al., 2002; Berninger et al., 1996; CO2proxiesarecurrentlynotresolved(CuiandSchubert,2017;Royer etal.,2014). BuckleyandSchymanski,2013;DeBoeretal.,2011;Katuletal., Inthecaseofstomata-basedproxies,onepossiblesourceoferroris 2010; Way et al., 2011). The approach of Konrad et al. (2008) employsafulloptimizationmodelandisquitecomplex,requiring the increasing insensitivity of gas exchange to CO2, due to the non- besidesinformationfortemperatureandhumidityalsodetermina- linearresponseofstomatalconductancegandassimilationrateAtoCa tionofaparameterλwhichquantifiesinasensethe“costofwater” (seeFig.4).AtloworsubambientCO2,g(seeFig.4a)aswellasA(see andisconstrainedbytheratioCi/Ca.(Noticethatourdefinitionof Fig. 4b) respond strongly and roughly linearly to changing Ca levels (Franksetal.,2013,2012;Temmeetal.,2013)(seeFig.4).Withele- λ is the inverse of the definition used in Cowan and Farquhar, 1977.) vated Ca, usually above about 400–500μmolmol−1 (depending on temperature), the response increasingly levels off: A approaches sa- (ii) Mostoftheother modelsrestricttheir modeldynamics tocarbon turation(thesaturationvaluedependsontemperature),aconsequence balance. They obtain the missing information on stomatal con- ductance from determining Ci/Ca, based on the well-known fact ofEq.(2),theFarquharmodelofC3-plantphotosynthesis,andequation thatbothdiffusionandphotosynthesisdiscriminatethe13Cisotope (4), expressing proportionality of the CO2-concentrations inside and againstthe12Cisotope.Exploitingthisfact,itispossibletocalcu- outsideoftheplant.g,however,becomesaccordingtoEq.(5)smaller latetheratio under further increasing Ca (Franks et al., 2013, 2012; Konrad et al., 2008).SDandE,whichareconnectedwithgviaEqs.(3)and(7),follow = Ci thistrend(seeFig.4c).Therefore,addingacertainincrementofCO2to Ca (4) analreadyhighCaleadstoaverysmall(decreasing)stepontheSD-axis whichisstatisticallydifficulttoascertain,particularlywhenthenatu- from 13C data from fossilized leaves (Beerling, 1994; Diefendorf rallyhighscatterofSDdataisconsidered.Despitetheseproblemsitis, etal.,2010;Farquharetal.,1982;Greinetal.,2010). however,principallypossibletoreconstructelevatedCafromstomatal data(Greinetal.,2011;Tesfamichaeletal.,2017). Pursuingthesecondapproach,wecombineEqs.(1),(2)and(4),and Gas exchange approaches offer the possibility of evaluating the arriveat(Konradetal.,2017) errormarginofCO2reconstructedwithfossilstomataldatabyvarying g= q( Ca ) Rd( Ca+K) theinputparametersovertheirwholerangeof(statistical)uncertainty (1 )Ca( Ca+K) (1 )Ca (5) (Konrad et al., 2008). Furthermore, it is possible by systematic para- metervariationtoidentifyparameterswhichexertthehighestinfluence therighthandsideofwhichcontains—apartfromthephotosynthesis (“criticalparameters”)ontheresults.Inthismanner,itcanbeshown parameters(obtainablefromlivingrelatives)andκ(obtainablefromthe thatthebiochemicalparameterq(carboxylationlimitedbyRubiscoor fossilleaves)—onlyCa.Expression(3) connectsg withleaf anatomy RuBP)representsacriticalparameter(Konradetal.,2008).Biochem- (obtainable from the fossil leaf) and the coefficient of diffusion DCO2. ical parameters are the only ones which have to be borrowed from Equatingexpressions(3)and(5)resultsinaquadraticequationforthe extantplants,introducingabasicsourceoferrorforCO2reconstructed atmosphericCO2concentrationCaunderwhichthefossilizedleafhad fromfossilstomata.Thiserrorintroducedbyphotosynthesisparameter grown. is exacerbated by the circumstance that q itself is affected by CO2: q Being notbased oncalibrationcurves fromextantspecies,gasex- tendstodecreasesomewhatwhenplantsareexposedexperimentallyto changemodelapproachesarealsoappliedtoextinctfossiltaxa(Franks elevatedCa(AinsworthandRogers,2007),whereasitincreasesunder etal.,2014;Greinetal.,2011).Furthermore,incontrasttocalibration subambient CO2 (Pinto et al., 2014). Adaption of the photosynthesis methods,gasexchangemodelsalsoincludestomatalparametersother system to Ca by this plastic response can be connected to nitrogen thanSD,namelystomatalporesizeanddepthandthereforeconsiderall contentoftheplant:ittendstobehigherundersubambientconditions traits which influence stomatal conductance. In fact, stomatal pore comparedtocontrolgroups(Pintoetal.,2014).Probably,qshiftedalso length may change over time within a taxon which can substantially during land plant evolution, according to changing Ca levels (Franks altertherelationshipbetweenCa,gandgasexchange(García-Amorena and Beerling, 2009). The possible sensitivity of q to Ca increases the et al., 2006; Miller-Rushing et al., 2009; Roth-Nebelsick et al., 2012; error margin when determining Ca from fossil stomata. All these un- Wagneretal.,1996). certainties also affect calibration-based approaches. This 5 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx Fig.4.Resultsobtainedfromapplyingthemodel(expressions(1)through(5)and(7))toQuercuspetraea:(a)leafconductanceg,(b)assimilationrateA,(c)stomatal densityνand(d)transpirationrateEasafunctionofatmosphericCO2forseveralvaluesofatmospherictemperatureTa.Relativeatmospherichumidityiswrel=0.6, κ=0.77,leaflengthl=3cm,windspeedvwind=1m/s.AthighCalevels,thestomataldensityresponseν(Ca)increasinglylevelsoff,followingthebasicresponseofg toincreasingCa. “ecophysiological” error margin is, however, “hidden” for cali- 2000; Jackson and Blois, 2015; Williams and Jackson, 2007). In fact, bration–basedmethods. thereisevidenceforshiftsinnichedemandsforpastvegetation,with speciesdistributionsbeingincongruentwithpalaeoenvironmentaldata (Worth et al., 2014). Non-analogue environments can also lead to 4.2. InterferenceofCO2withotherenvironmentalparametersandthe species compositions within a flora which cannot be found today problemofnon-analogueclimates (JacksonandWilliams,2004;WilliamsandJackson,2007). tCaobOoo2Rutotehnse1prp8ole0nansnμevtmiorpoofhnlySmmsDieooanll−ontagd1ly,gpaloatnowrdaeCmeracienoitsgleorpgsWa.yr,UDtaEuonrfdcintochgnaesngifdlaiaenrcr-tiraeaebrlafslecy,rh,eCianawsgaitcimhnaflonrueusnaeplntsoecodnesbetooesf aag(ffsCseuaCc)mtoienwsdsaimdtteheorarsitdtnefsgome,rnhastnoiitmwdiveeveveperbeyrer,limtoohwduescehawff.mieWtbchitieteohnlfterCveCaasaptoee(ndcsetgCeataosFcefihugxatc.uhn4rag)ene.CsgIetain,rmtiChsaeeOy,f2iutthdnmuocstingiobhonett recognized byCi/Ca data offossil plantmaterial derived from carbon bsterotnhgeesctasoentphlaatntwpehhyasivoeloaglyreaanddyepcaoslsoegdy.the period in which Ca acts ilosowto-hpuems(idGietyrhacrotnedtitaiol.n,s2.01C2o)n.vLeorswelCy,aceolenvdaitteiodnsCcaancatnhemreiftoigreatmeilmowic causTeheevianpfloureanticoenocfoCnsauomnestrhaneaspt.irLaetaiofnteamffpeecrtsatlueraef,tienmtupernra,tduerpe,enbdes- wateravailability:Plantsmaythereforeneedlesswaterunderelevated alsoonleafsize,acharacterwhichissensitivetovariousenvironmental Ca for the same or a higher amount of carbon harvest. The apparent parameters and therefore included as “proxy trait” in, for instance, influenceofCaonwaterdemandhasvariousconsequences,depending CLAMP. The interrelationships between transpiration, evaporational on vegetation type and environmental conditions. For example, a temperateandmesicforestexposedtoelevatedCamayneedlesswater, coofo(alisnsgu,mCeOd2),inletaefrtswizieneadndentvemiropnemraetunrtaelreeffperectssenwthaincheaxrceelsluenittabexleamtopblee due to lower g, leading to a higher soil water content (Bader et al., unraveled by a mechanistic analysis. In the following, these inter- 2013).Atwarmanddriersites,plantscanproducemorefoliagecover relationships will be evaluated on a physical–physiological basis to wfaictth,rtihseinrgecCean,tcoamntpharroepdotgoenpirce-rinisdeuisntriCaalCaapp(Deaornsothoueaffetecatl.,ve2g0e1t3a)t.ioInn aexrreirvteoantathfiersctoersrteilmataiotinosnboefttwheeepnulteaatifvesizbeiaasnwdhoicthheCrOe2ncvairnonpmosesnibtlayl coverinvariousways,promotingLAIor“greening”oflandscapesbe- parameters. yondwhatisexpectedfromlocalprecipitation,asindicatedbyremote sensingandotherdata(Ukkolaetal.,2016;Zhuetal.,2016).Manyof thesedevelopmentscanbeexplainedby“CO2fertilization”whichisthe 4.3. DoesCO2affectleaftemperatureandleafsize? enhancement of photosynthesis by elevated Ca, as is widely demon- stratedbyexperiments(AinsworthandRogers,2007). 4.3.1. Largeleavesvs.smallleaves Consequently, the taxon-specific humidity threshold limiting the Speciesshowinglargeleavesarepreferentiallyfoundinhumidha- ecologicalnichecanbeshiftedbyCa.PossibleimpactofCO2onspecies- bitats which also show sufficient availability of nutrients (Givnish, specific environmental demands means that current abiotic climate 1984;McDonaldetal.,2003;Nicotraetal.,2011;Peppeetal.,2011; envelope data may not hold true for the past (or the future). Wrightetal.,2017).Also,thexylemoflarge-leavedtaxaisquitevul- Combination of CO2 values different to extant levels with other en- nerabletocavitation,andthereforenotabletocopewithlowhumidity vironmental parameters leads to “non-analogue climates”, meaning (Schreiberetal.,2016).Infact,leafsizeisaCLAMPparameterandis conditionsforwhichnoextantcounterpartexists(BennettandWillis, occasionally also used alone as a proxy for palaeoprecipitation (Wilf 6 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx et al., 1998). The positive correlation of leaf size with humidity is commonly explained on the basis of boundary layer conductance. Largerobjectsshow—allotherfactorslikewindvelocityandsurface topography being equal — a thicker boundary layer and therefore a lower boundary layer conductance than smaller objects (Schuepp, 1993). Boundary layer conductance is a component of the total leaf conductance, therefore also affecting gas exchange, but usually to a minor (or even negligible) degree (Schuepp, 1993). For leaf heat transfer, however, boundary layer conductance is crucial. With in- creasing boundary layer thickness resistance to heat dissipation rises, and large leaves will tend to higher leaf temperatures than smaller leavesunderidenticalconditions. Smallleavesshouldthereforebeparticularlysuitableinhotanddry environmentsbecausenotranspirationisrequiredtopreventheatda- mageand/ordepressionofphotosynthesisduetoexcessivelyhighleaf temperatures(Yatesetal.,2010).Preventingheatdamageis,however, nottheonlyfactorwhichcouplesrisingleaftemperaturetorisingwater demand. With a given g, elevated leaf temperature promotes leaf-in- ternal evaporation and, therefore, higher transpiration rates (Jones, 1992).Therelationshipbetweenboundarylayerthickness,leafsizeand leaf temperature can be modulated by leaf shape, for example by making the leaf longer and narrower (Monteith and Unsworth, 2008; Schuepp, 1993).Also,theboundarylayerthicknessoflobedleavesis substantially decreased and more independent of wind direction as comparedtounlobedleaves(Roth-Nebelsick,2001;Vogel,2009). Itisdifficulttoexactlypredictleaftemperatureforrealleavesunder natural conditions. The well-known approximative equations for boundarylayerthickness,suchasprovidedinNobel(2009),havetheir origininengineeringscienceandfocusonartificialflatorroundobjects with a smooth surface. Moreover, experimental studies often employ Fig. 5.Examples for branching axis systems of Devonian plants without windchannelenvironmentswithlaminarinflowregimewhilenatural webbedleaves.(A)ApartofthebranchingsystemofPsilophyton,terminating winds show a high turbulence intensity. Additionally, various leaf withisotomousultimateunits(redrawnfromBanksetal.,1975).(B)Alateral surfacestructures,suchastrichomecovers,arecapableofanenhanced branchofPseudosporochnus,equippedwithultimateappendages(redrawnfrom infraredreflectivityandaffectalsotheairflowpatternsaroundleaves. BerryandFairon-Demaret,2002). Thus, strongly varying wind conditionsand complextopographic leaf surface profiles substantially affect local leaf temperature and its dis- vegetationwhichisadaptedtolowCa,willindeedrunintoproblems tributioninrealleaves(Leighetal.,2016;Saudreauetal.,2017;Wigley underthecurrentrisingCaandglobaltemperature? andClark,1974).Althoughnaturalleaftemperatureprofilesaremuch Withrespecttothermaldamage,avalueofabout40°Cisquotedas more complex than in approximative models, intensified convective general upper limit for thermostability (Larcher, 2003). However, cooling will — in contrast to evaporative cooling — be principally plantsgrowinginhot andsunnyhabitatsarequitethermostable,and advantageousunderconditionsoflimitedwateravailabilitybecauseit canbeabletotolerateleaftemperaturesof50–60°C(Larcher,2003).A curbstranspirationalwaterloss.Growingsmallerand/orstrongerdis- mainconcernareextremeevents,suchasexceptionalheatwaveswhich sected leaves represents thus a suitable strategy in warm and dry en- mayinfactdriveleaftemperatureintocriticalheights(O'sullivanetal., vironments. Leigh et al. (2016) showed that usually leaf temperature 2017),makingconvectiveheattransferanimportantissue.Beyondthe exceeds air temperature, that this effect is positively correlated with topicofthermaldamage,thereisstilltheissueofhighertranspiration effectiveleafwidth,andthatleafshapespromotingconvectiveleafheat rates in “warmer” leaves under a given stomatal conductance and transfermightbefavouredinopenhabitats,aswasrecentlyfoundfor boundarylayer,duetorisingwatervaporcontentoftheleafinternal Proteaceae(Onsteinetal.,2016). air.Thus,leaftemperatureandtranspirationrateare—allothercon- ElevatedCamayindirectlyactuponleaftemperature,viasuppres- ditions being equal — positively and dynamically coupled. The final singevaporativecoolingbytranspiration,leadingto“warmerleaves”. effectofelevatedCaonleaftemperatureis,however,difficulttopredict The consequences of high CO2 for leaf temperature regulation were sincehighertranspirationratesleadtohigherevaporativecooling.In discussedforfutureclimatescenariosunderthecurrentanthropogenic the following chapter, model studies addressing this interrelationship riseofCO2,proposingthepossibilityofrisingmeanleaftemperatures arepresented. (Cernusak et al., 2013; Doughty and Goulden, 2008; Voelker et al., 2016).Also,theimpactofhighCaonleaftemperaturewasdiscussedas a factor for leaf evolution for climates of the past (Lee et al., 2015; 4.3.2. ModellingtheinteractionofCO2,leaftemperatureandleafsize ThesimplemodelintroducedinEqs.(1)to(5)canbeexpandedto Beerling and Berner, 2005; McElwain et al., 1999). It was even pro- predict leaf temperature T (in addition to leaf conductance g and posed that high Ca levels which prevailed during early land plant evolution were responsible for the considerable delay in the develop- transpiration rate E) if atmospheric temperature Ta, atmospheric hu- mentofmacrophyllousleaves,duetothecircumstancethataverylow miditywa andinsolationaregiven.Thisisachievedbyincludingleaf energy balance into the already derived system of equations. In the stomatalconductancewassufficientatthattimetofuelphotosynthesis, following a brief outline is provided. Conservation of energy under andtheentirestructureofearlylandplantswasaccordinglyadapted, stationaryconditionsrequires showinglowstomataldensityandfinelydividedterminalpartsofthe branchingstems(seeFig.5;RavenandEdwards,2014;Beerlingetal., (energyintoleaf)={energyoutofleaf} 2001). +[energyconsumedbyleafmetabolism] Does this mean that plants with large leaves, as components of a 7 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx Fig.6.DifferencebetweenleaftemperatureTandatmospherictemperatureTaasafunctionofleaflengthlforseveralvaluesofatmosphericCO2forQuercuspetraea. ThesingleplotsrepresentdifferentcombinationsofwindspeedvwindandatmospherictemperatureTa.Relativeatmospherichumidityiswrel=0.6andCi/Caratiois κ=0.77,forallcases.ThedifferentcoloursofthecurvesdenotetheatmosphericCO2–concentration. Sincemetabolisticprocessesconsumeonlyaverysmallamountofthe γ≈45°(angleofsunabovehorizon),τN≈0.7(atmospherictransmit- leafenergyinput,itisjustifiedtosimplyneglectthem.Inmathematical tance for moderate clear sky at moderate elevation), a≈0.60 (ab- terms,leafenergybalanceamountsthento(Nobel,2009): sorptance of leaf for global radiation), r≈0.20 (reflectance of the 2K surroundingsforglobalradiation),aIR≈0.96(leafabsorptivityforin- a(1+r)Sc N1/sin sin +aIR (Ts4urr+Ts4ky)=2eIRT4+ dair(T Ta) frared radiation), Tsurr≈20°C (temperature of the surroundings), bl Tsky≈−20°C(radiationtemperatureoftheclearsky),eIR≈0.96(leaf +H E(T) vap (6) emissivityforinfraredradiation).Severalofthesequantitiesvarywith the composition of the surrounding vegetation and with climate. The Thelefthandsideisthesumofdirectsolarradiationplussolarradia- numerical values given represent typical values (for details consult tion reflected by the surroundings (first term) and absorbed infrared Nobel(2009)). radiationemanatingfromthesurroundingsandthesky(secondterm). Inthefollowingwepresentexemplarymodelresultsforleafcooling The right hand side sums three kinds of leaf energy losses: infrared and heating effects. From Fig. 6 some basic results concerning leaf radiationemittedbytheleaf(firstterm),heatconductedthroughthe boundarylayertotheopenatmosphere(secondterm)andthelossof coolingandheatingandtheimpactofCO2onleaftemperaturemaybe derivedforQuercuspetraea: latent heat stored in the water vapour which emanates from the leaf interior(thirdterm).Thetranspirationrateisgivenby • LeafheatingtakesplaceforatmospherictemperatureTa=15°Cand E(T)=ag(wsat(T) wa) (7) cooling for Ta=35°C. At Ta=25°C, leaf temperature T is quite awherDeH2Ow/aDCOd2e.nTohteestetmhepera(atubrseoludteep)endaetmncoespohfertihce shautumriadtiitoyn caonnd- • Tsniohmnei-ldeaxerpistetonendTtea.nfcoeroTfale=af2t5e°mCp.eTrahteureeffoenctCoafisCqauibteecwoemaeks,amndoraelmporost- centration of water vapour within the leaf is given by the Clausiu- sm–3Claanpdeycro2n=e5q3u0a6ti,onT,iwnsatK(eTl)vi=n)(c(1R/Tei)fe, 1(c92/7T4))(.c1F=urt2h.e0r35qu×an1t0it1i0esmaopl/- • LCneoaauofnncseilzedeaffomtreaemtltepevreasrtaeotdunrlCyeaofbocurctuliressanvfooenrseTtwhahe=ilce1hss5aw°rCeeaaksnh.doSrtertleoernvgatehtesatdnimCraop.uagctholyf pearing in (6) are Sc=1366J/m2/s (solar constant), 3cm. σ=5.67×10−8J/m2/s/K4 (Stefan–Boltzmann constant), • Dependenceofleaf temperature onwind speedis not verystrong, Kair=2.57×10−2J/m/s/K(coefficientofthermalconductivityofair butmorepronouncedforsmallerwindspeeds. at 20°C), Hvap=40.68×103J/mol (vapourization heat of water), 8 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx Insummary,themodelresultsindicatethatlargeleaves—asop- R.D.,Lunt,D.J.,Pearson,P.N.,2016.ChangingatmosphericCO2concentrationwas posed to general expectation — do not heat up under high air tem- theprimarydriverofearlyCenozoicclimate.Nature533,380–384.https://doi.org/ 10.1038/nature17423. perature, but evencooldown. Obviously,the transpirationaleffectof Astorga,G.A.,Jordan,G.J.,Brodribb,T.,2016.Towardsunderstandingthefossilrecord lowergunderelevatedCaisnotstrongenoughtobeofrelevanceforthe better:insightsfromrecentlydepositedplantmacrofossilsinasclerophyll-dominated interconnectedprocessesofevaporationandheatdissipation.Moderate subalpineenvironment.Rev.Palaeobot.Palynol.233,1–11.https://doi.org/10. 1016/j.revpalbo.2016.06.004.URL:http://www.sciencedirect.com/science/article/ leaf heating occurs for larger leaves under lower air temperatures, as pii/S0034666716301154. wasalsoproposedbyOkajimaetal.(2012),butaretheneasilycooled Bader,M.K.F.,Leuzinger,S.,Keel,S.G.,Siegwolf,R.T.W.,Hagedorn,F.,Schleppi,P., bymoderatewindmovementswhichcommonlyoccurintreecanopies. Körner,C.,2013.CentralEuropeanhardwoodtreesinahigh-CO2future:synthesisof It should, however, be emphasized that availability of water and an8-yearforestcanopyCO2enrichmentproject.J.Ecol.101,1509–1519.https:// doi.org/10.1111/1365-2745.12149. thereforetranspirationwasnotrestricted.Themodelledsituationthus Bailey,I.,Sinnott,E.,1916.TheclimaticdistributionofcertaintypesofAngiosperm applies toa situation ofunlimited watersupply and therefore unrest- leaves.Am.J.Bot.3,24–39. ricted transpiration. Under these conditions, Ca has no or negligible Bakelre-aBvreosshin,Kte.Fm.,pPereaette,Rfo.Kre.s,t1t9r9ee7s..TEhceoleocgoylo7g8ic,a1l2s5ig0n–i1fi2c5a5n.chetotpfsl:o/b/eddoia.onrdg/t1o0ot.1h8ed90/ influence on leaf heat dissipation and does not limit leaf size. The 0012-9658(1997)078[1250:TESOLA]2.0.CO;2. problem of overheating under elevated Ca is apparently of relevance Banks,H.P.,Leclercq,S.,Hueber,F.M.,1975.AnatomyandmorphologyofPsilophyton onlyforhabitatsorsituationsoflowsoilwateravailability. dawsoniisp.n.fromthelateLowerDevonianofQuebec(Gaspé),andOntario, Canada.Palaeontograph.Am.8,77–127. Battipaglia,G.,Saurer,M.,Cherubini,P.,Calfapietra,C.,McCarthy,H.R.,Norby,R.J., 5. Summary FrancescaCotrufo,M.,2013.ElevatedCO2increasestree-levelintrinsicwateruse efficiency:insightsfromcarbonandoxygenisotopeanalysesintreeringsacrossthree forestFACEsites.NewPhytol.197,544–554.https://doi.org/10.1111/nph.12044. Thereismuchcurrentinterestinleaftrait–climatecorrelations,and Beerling,D.,1994.Predictingleafgasexchangeandδ13Cresponsestothepast30000 research which involves extrapolations of these correlations into the yearsofglobalenvironmentalchange.NewPhytol.128,425–433. past,suchasreconstructionofpastclimatesbasedonleaftraits,orinto Beerling,D.,Osborne,C.,Chaloner,W.,2001.Evolutionofleaffrominlandlinkedto the future would largely benefit from an improved understanding of atmosphericCO2declineinthelatePalaeozoicera.Nature410,352–354. Beerling,D.,Royer,D.,2011.ConvergentCenozoicCO2history.Nat.Geosci.4,418–420. functional traits. The circumstance that plant-based proxies for pa- Beerling,D.J.,Berner,R.A.,2005.Feedbacksandthecoevolutionofplantsandatmo- laeoclimateappeartocatchoveralltrendsreasonablywellsuggeststhat sphericCO2.Proc.Natl.Acad.Sci.U.S.A.102,1302–1305.https://doi.org/10.1073/ pnas.0408724102.URL:http://www.pnas.org/content/102/5/1302.abstract. variousresponsesofleaftraitstoenvironmentmaybealsoextrapolated Beerling,D.J.,McElwain,J.C.,Osborne,C.P.,1998.Stomatalresponsesofthe‘living intofutureclimatescenarios.However,someinconsistenciesandpro- fossil’GinkgobilobaL.tochangesinatmosphericCO2concentrations.J.Exp.Bot.49, blemsremain.Ofspecialinterestarethemanifoldaspectsoftheimpact 1603–1607. ofCO2onleaffunction.Vegetationwasrepeatedlyexposedtochanging Beerwlinilglo,wD.J(S.,aRliuxnhdegrbreance,aM).i,n20th0e0.suLbea-afrmcteictatbooltihceapnadstm9o0r0p0hoyloeagricsaolfregslopboanlseesnovfirdown-arf CO2levelswhichwereoftencombinedwithchangingclimate,andboth mentalchange.NewPhytol.145,257–269.https://doi.org/10.1046/j.1469-8137. representimportantdriversforlandplantevolution.Theimpactofnon- 2000.00582.x. analogue climate situations, representing combinations of abiotic en- Bennett,K.D.,Willis,K.J.,2000.Effectofglobalatmosphericcarbondioxideonglacia- l–interglacialvegetationchange.GlobalEcol.Biogeogr.9,355–361.https://doi.org/ vironmental parameters which do not exist today and particularly so 10.1046/j.1365-2699.2000.00201.x. withsubambientorelevatedCO2,onplantfunctionisdifficulttopre- Bernacchi,C.,Pimentel,C.,Long,S.,2003.Invivotemperatureresponsefunctionsof dict.Asanexample,thepossibleriseofleaftemperatureunderelevated parametersrequiredtomodelRuBP-limitedphotosynthesis.PlantCellEnviron.26, 1419–1430. CO2wasconsidered,being expectedduetothecouplingoftranspira- Berninger,F.,Mäkela,A.,Hari,P.,1996.Optimalcontrolofgasexchangeduringdrought: tional cooling and stomatal conductance. Since transpiration and leaf empiricalevidence.Ann.Bot.77,469–476. temperaturearedynamicallylinked,thereis,however,nostraightfor- Berry,C.M.,Fairon-Demaret,M.,2002.ThearchitectureofPseudosporochnusnodosus LeclercqetBanks:aMiddleDevoniancladoxylopsidfromBelgium.Int.J.PlantSci. ward prediction of leaf heat dissipation under changing CO2 and a 163,699–713. closeranalysisbasedonamodelconnectinggasexchangeandleafheat Boyce,C.,Lee,J.E.,2011.Anexceptionalroleforfloweringplantphysiologyintheex- transfer indicated in fact that the effect of elevated CO2 on leaf tem- pansionoftropicalrainforestsandbiodiversity.Proc.R.Soc.B277,3437–3443. Boyce,C.K.,Brodribb,T.J.,Feild,T.S.,Zwieniecki,M.A.,2009.Angiospermleafvein perature may be minor, at least when water supply is not limited. evolutionwasphysiologicallyandenvironmentallytransformative.Proc.R.Soc. Correlations of leaf size with abiotic environmental parameters thus Lond.B:Biol.Sci.276,1771–1776.https://doi.org/10.1098/rspb.2008.1919.URL: appear to be not — or only moderately — affected by Ca, at least in http://www.rspb.royalsocietypublishing.org/content/royprsb/276/1663/1771.full. habitats with sufficient wateravailability. This example demonstrates pdf. Boyce,C.K.,Zwieniecki,M.A.,2012.Leaffossilrecordsuggestslimitedinfluenceofat- thatecophysiologicalanalysesoffunctionalleaftraitscanparticularly mosphericCO2onterrestrialproductivitypriortoangiospermevolution.Proc.Natl. contribute to identifying adaptive features of leaf architecture and to Acad.Sci.109,10403–10408.https://doi.org/10.1073/pnas.1203769109.URL: evaluatepredictionsintothefutureaswellasintothepast. http://www.pnas.org/content/109/26/10403.abstract. Breecker,D.,Sharp,Z.,McFadden,L.D.,2009.Seasonalbiasintheformationandstable isotopiccompositionofpedogeniccarbonateinmodernsoilsfromcentralNew Acknowledgements Mexico,USA.Geol.Soc.Am.Bull.121,630–640. Buckley,T.N.,Schymanski,S.J.,2013.Stomataloptimisationinrelationtoatmospheric This work was partially financially supported by a grant of the CO2.NewPhytol.201,372–377.https://doi.org/10.1111/nph.12552. Bunce,J.A.,2007.Lowcarbondioxideconcentrationscanreversestomatalclosureduring Volkswagen Foundation to A.R.-N. within the program “Research in waterstress.Physiol.Plant.130,552–559.https://doi.org/10.1111/j.1399-3054. Museums” (Ref. 87139). We thank the Editor and two anonymous 2007.00937.x. Campbell,I.,1999.Quaternarypollentaphonomy:examplesofdifferentialredeposition Reviewers for their constructive comments, and James Nebelsick, anddifferentialpreservation.Palaeogeogr.Palaeoclimatol.Palaeoecol.149, UniversityofTübingen,forcriticallyreadingtheEnglishmanuscript. 245–256. Cernusak,L.A.,Winter,K.,Dalling,J.W.,Holtum,J.A.M.,Jaramillo,C.,Körner,C., Leakey,A.D.B.,Norby,R.J.,Poulter,B.,Turner,B.L.,Wright,S.J.,2013.Tropical References forestresponsestoincreasingatmosphericCO2:currentknowledgeandopportunities forfutureresearch.Funct.PlantBiol.40,531–551.https://doi.org/10.1071/ Aalto,T.,Hari,P.,Vesala,T.,2002.Comparisonofanoptimalstomatalregulationmodel FP12309.URL:http://www.publish.csiro.au/paper/FP12309. andabiochemicalmodelinexplainingCO2exchangeinfieldconditions.Sil.Fenn. Cowan,I.,1977.Stomatalbehaviourandtheenvironment.Adv.Bot.Res.4,117–227. 36,615–623. Cowan,I.,Farquhar,G.,1977.Stomatalfunctioninrelationtoleafmetabolismanden- Ainsworth,E.A.,Long,S.P.,2005.Whathavewelearnedfrom15yearsoffree-airCO2 vironment.SymposiaoftheSocietyforExperimentalBiology471. enrichment(FACE)?Ameta-analyticreviewoftheresponsesofphotosynthesis,ca- Coxall,H.,Wilson,P.,Pälike,H.,Lear,C.,Backman,J.,2005.Rapidstepwiseonsetof nopypropertiesandplantproductiontorisingCO2.NewPhytol.165,351–372. AntarcticglaciationanddeepercalcitecompensationinthePacificOcean.Nature Ainsworth,E.A.,Rogers,A.,2007.Theresponseofphotosynthesisandstomatalcon- 433,53–57. ductancetorising[CO2]:mechanismsandenvironmentalinteractions.PlantCell Coxall,H.K.,Wilson,P.A.,2011.EarlyOligoceneglaciationandproductivityinthe Environ.30,258–270. easternequatorialPacific:insightsintoglobalcarboncycling.Paleoceanography Anagnostou,E.,John,E.H.,Edgar,K.M.,Foster,G.L.,Ridgwell,A.,Inglis,G.N.,Pancost, 26https://doi.org/10.1029/2010PA002021.n/a–n/a. 9 A.Roth-NebelsickandW.Konrad Flora xxx (xxxx) xxx–xxx Cui,Y.,Schubert,B.A.,2017.AtmosphericpCO2reconstructedacrossfiveearlyEocene Hincke,A.J.C.,Broere,T.,Kürschner,W.M.,Donders,T.H.,Wagner-Cremer,F.,2016. globalwarmingevents.EarthPlanet.Sci.Lett.478,225–233. Multi-yearleaf-levelresponsetosub-ambientandelevatedexperimentalCO2in DeBoer,H.,Lammertsma,E.,Wagner-Cremer,F.,Dilcher,D.,Wassen,M.,Dekker,S., Betulanana.PLoSONE11,e0157400.https://doi.org/10.1371/journal.pone. 2011.Climateforcingduetooptimizationofmaximalleafconductanceinsubtropical 0157400. vegetationunderrisingCO2.Proc.Natl.Acad.Sci.U.S.A.108,4041–4046.https:// Hinojosa,L.F.,Pérez,F.,Gaxiola,A.,Sandoval,I.,2011.Historicalandphylogenetic doi.org/10.1073/pnas.1100555108. constraintsontheincidenceofentireleafmargins:insightsfromanewSouth Diefendorf,A.F.,Mueller,K.E.,Wing,S.L.,Koch,P.L.,Freeman,K.H.,2010.Globalpat- Americanmodel.GlobalEcol.Biogeogr.20,380–390.https://doi.org/10.1111/j. ternsinleaf13Cdiscriminationandimplicationsforstudiesofpastandfuturecli- 1466-8238.2010.00595.x. mate.Proc.Natl.Acad.Sci.107,5738–5743.https://doi.org/10.1073/pnas. Huff,P.,Wilf,P.,Azumah,E.,2003.Digitalfutureforpaleoclimateestimationfromfossil 0910513107.URL:http://www.pnas.org/content/107/13/5738.abstract. leaves?Preliminaryresults.Palaios18,266–274.https://doi.org/10.1669/0883- DiMichele,W.A.,1983.LepidodendronhickiiandgenericdelimitationinCarboniferous 1351(2003)018<0266:dffpef>2.0.co;2.URL:http://www.palaios.sepmonline.org/ lepidodendridlycopods.Syst.Bot.317–333. content/18/3/266.abstract. Donohue,R.J.,Roderick,M.L.,McVicar,T.R.,Farquhar,G.D.,2013.ImpactofCO2fer- Jackson,S.T.,Blois,J.L.,2015.Communityecologyinachangingenvironment:per- tilizationonmaximumfoliagecoveracrosstheglobe'swarm,aridenvironments. spectivesfromthequaternary.Proc.Natl.Acad.Sci.112,4915–4921.https://doi. Geophys.Res.Lett.40,3031–3035. org/10.1073/pnas.1403664111.URL:http://www.pnas.org/content/112/16/4915. Doughty,C.E.,Goulden,M.L.,2008.Aretropicalforestsnearahightemperature abstract. threshold?J.Geophys.Res.Biogeosci.113https://doi.org/10.1029/2007JG000632. Jackson,S.T.,Williams,J.W.,2004.Modernanalogsinquaternarypaleoecology:here n/a–n/a. today,goneyesterday,gonetomorrow?Annu.Rev.EarthPlanet.Sci.32,495–537. Edwards,E.J.,Spriggs,E.L.,Chatelet,D.S.,Donoghue,M.J.,2016.Unpackingacentury- https://doi.org/10.1146/annurev.earth.32.101802.120435. oldmystery:winterbudsandthelatitudinalgradientinleafform.Am.J.Bot.103, Jagniecki,E.A.,Lowenstein,T.K.,Jenkins,D.M.,Demicco,R.V.,2015.Eoceneatmo- 975–978. sphericCO2fromthenahcoliteproxy.Geology43,1075–1078. Farquhar,G.,O’Leary,M.,Berry,J.,1982.Ontherelationshipbetweencarbonisotope Johnson,K.,1989.AhighresolutionmegafloralbiostratigraphyspanningtheCretaceous/ discriminationandintercellularcarbondioxideconcentrationinleaves.Aust.J.Plant TertiaryboundaryinthenorthernGreatPlains. UnpublishedPh.D.Thesis. Physiol.9,121–137. Jones,H.,1992.PlantsandMicroclimate.PlantsandMicroclimate.CambridgeUniversity Farquhar,G.,VonCaemmerer,S.,Berry,J.,1980.Abiochemicalmodelofphotosynthetic Press,Cambridge. CO2assimilationinleavesofC3species.Planta149,78–90. Jordan,G.,2011.Acriticalframeworkfortheassessmentofbiologcialpalaeoproxies: Feild,T.S.,Sage,T.L.,Czerniak,C.,Iles,W.J.D.,2005.Hydathodalleafteethof predictingpastclimateandlevelsofatmosphericCO2fromfossilleaves.NewPhytol. Chloranthusjaponicus(Chloranthaceae)preventguttation-inducedfloodingofthe 192,29–44. mesophyll.PlantCellEnviron.28,1179–1190.https://doi.org/10.1111/j.1365- Karst,A.L.,Lechowicz,M.J.,2007.Arecorrelationsamongfoliartraitsinfernsconsistent 3040.2005.01354.x. withthoseintheseedplants?NewPhytol.173,306–312. Ferguson,D.,1985.Theoriginofleaf-assemblages–newlightonanoldproblem.Rev. Katul,G.,Manzoni,S.,Palmroth,S.,Oren,R.,2010.Astomataloptimizationtheoryto Palaeobot.Palynol.46,117–188. describetheeffectsofatmosphericCO2onleafphotosynthesisandtranspiration. Ferguson,D.K.,2005.Planttaphonomy:ruminationsonthepast,thepresent,andthe Ann.Bot.105,431–442. future.Palaios20,418–428.https://doi.org/10.2110/palo.2005.P05-25p.URL: Kennedy,E.M.,Arens,N.C.,Reichgelt,T.,Spicer,R.A.,Spicer,T.E.V.,Stranks,L.,Yang,J., http://palaios.geoscienceworld.org/content/palaios/20/5/418.full.pdf. 2014.Derivingtemperatureestimatesfromsouthernhemisphereleaves. Fischer,H.,Severinghaus,J.,Brook,E.,Wolff,E.,Albert,M.,Alemany,O.,Arthern,R., Palaeogeogr.Palaeoclimatol.Palaeoecol.412,80–90.https://doi.org/10.1016/j. Bentley,C.,Blankenship,D.,Chappellaz,J.,2013.Wheretofind1.5millionyroldice palaeo.2014.07.015.URL:http://www.sciencedirect.com/science/article/pii/ fortheIPICS“Oldest-Ice”icecore.Clim.Past9,2489–2505. S0031018214003708. Franks,P.,Beerling,D.,2009.CO2-forcedevolutionofplantgasexchangecapacityand Kohn,M.,Cerling,T.,2002.Stableisotopecompositionsofbiologicalapatite.Rev. water-useefficiencyoverthePhanerozoic.Geobiology7,227–236. Mineral.Geochem.48,455–488. Franks,P.J.,Adams,M.A.,Amthor,J.S.,Barbour,M.M.,Berry,J.A.,Ellsworth,D.S., Konrad,W.,Katul,G.,Roth-Nebelsick,A.,Grein,M.,2017.Areducedordermodelto Farquhar,G.D.,Ghannoum,O.,Lloyd,J.,McDowell,N.,Norby,R.J.,Tissue,D.T.,von analyticallyinferatmosphericCO2concentrationfromstomatalandclimatedata. Caemmerer,S.,2013.SensitivityofplantstochangingatmosphericCO2concentra- Adv.WaterResourc.104,145–157.https://doi.org/10.1016/j.advwatres.2017.03. tion:fromthegeologicalpasttothenextcentury.NewPhytol.197,1077–1094. 018.URL:http://www.sciencedirect.com/science/article/pii/S0309170816305024. https://doi.org/10.1111/nph.12104. Konrad,W.,Roth-Nebelsick,A.,Grein,M.,2008.Modellingofstomataldensityresponse Franks,P.J.,Leitch,I.J.,Ruszala,E.M.,Hetherington,A.M.,Beerling,D.J.,2012. toatmosphericCO2.J.Theor.Biol.253,638–658. PhysiologicalframeworkforadaptationofstomatatoCO2fromglacialtofuture Kovar-Eder,J.,2016.EarlyOligoceneplantdiversityalongtheUpperRhineGraben:the concentrations.Phil.Trans.R.Soc.B:Biol.Sci.367,537–546. fossilfloraofRauenberg,Germany.ActaPalaeobot.56,329–440. Franks,P.J.,Royer,D.L.,Beerling,D.J.,VandeWater,P.K.,Cantrill,D.J.,Barbour,M.M., Kürschner,W.,1996.LeafstomataasbiosensorsofpalaeoatmosphericCO2levels. PhD Berry,J.A.,2014.NewconstraintsonatmosphericCO2concentrationforthe Thesis. Phanerozoic.Geophys.Res.Lett.41,4685–4694.https://doi.org/10.1002/ Kürschner,W.,Stulen,I.,Wagner,F.,Kuiper,P.,1998.Comparisonofpalaeobotanical 2014GL060457. observationswithexperimentaldataontheleafanatomyofDurmastoak[Quercus García-Amorena,I.,Wagner,F.,VanHoof,T.,GómezManzaneque,F.,2006.Stomatal petraea(Fagaceae)]inresponsetoenvironmentalchange.Ann.Bot.81,657–664. responsesindeciduousoaksfromsouthernEuropetotheanthropogenicatmospheric Larcher,W.,2003.PhysiologicalPlantEcology,4thed.CambridgeUniversityPress, CO2increase;refiningthestomatal-basedCO2proxy.Rev.Palaeobot.Palynol.141, Cambridge. 303–312. Lee,A.P.,Upchurch,G.,Murchie,E.H.,Lomax,B.H.,2015.Leafenergybalancemodelling Gastaldo,R.A.,Ferguson,D.K.,Walther,H.,Rabold,J.M.,1996.Criteriatodistinguish asatooltoinferhabitatpreferenceintheearlyangiosperms.Proceedingsofthe parautochthonousleavesinTertiaryalluvialchannel-fills.Rev.Palaeobot.Palynol. RoyalSocietyofLondonB:BiologicalSciences282https://doi.org/10.1098/rspb. 91,1–21. 2014.3052.URL:http://rspb.royalsocietypublishing.org/content/royprsb/282/ Gerhart,L.M.,Harris,J.M.,Nippert,J.B.,Sandquist,D.R.,Ward,J.K.,2012.Glacialtrees 1803/20143052.full.pdf. fromtheLaBreatarpitsshowphysiologicalconstraintsoflowCO2.NewPhytol.194, Leigh,A.,Sevanto,S.,Close,J.D.,Nicotra,A.B.,2016.Theinfluenceofleafsizeandshape 63–69.https://doi.org/10.1111/j.1469-8137.2011.04025.x. onleafthermaldynamics:doestheoryholdupundernaturalconditions?PlantCell Gerhart,L.M.,Ward,J.K.,2010.Plantresponsestolow[CO2]ofthepast.NewPhytol. Environ.https://doi.org/10.1111/pce.12857.n/a-n/a. 188,674–695.https://doi.org/10.1111/j.1469-8137.2010.03441.x. Li,S.F.,Jacques,F.M.B.,Spicer,R.A.,Su,T.,Spicer,T.E.V.,Yang,J.,Zhou,Z.K.,2016. Givnish,T.,1979.OntheAdaptiveSignificanceofLeafForm.ColumbiaUniversityPress, Artificialneuralnetworksrevealahigh-resolutionclimaticsignalinleafphysiog- NewYork,pp.375–473. nomy.Palaeogeogr.Palaeoclimatol.Palaeoecol.442,1–11.https://doi.org/10.1016/ Givnish,T.,2002.AdaptiveSignificanceofEvergreenvs.DeciduousLeaves:Solvingthe j.palaeo.2015.11.005.URL:http://www.sciencedirect.com/science/article/pii/ TripleParadox,vol.36https://doi.org/10.14214/sf.535.URL:http://www. S0031018215006434. silvafennica.fi/article/535. Little,S.A.,Kembel,S.W.,Wilf,P.,2010.Paleotemperatureproxiesfromleaffossilsre- Givnish,T.J.,1984.LeafandCanopyAdaptationsinTropicalForests.Springer interpretedinlightofevolutionaryhistory.PLoSONE5,e15161.https://doi.org/10. Netherlands,Dordrecht,pp.51–84. 1371/journal.pone.0015161. Givnish,T.J.,Kriebel,R.,2017.Causesofecologicalgradientsinleafmarginentirety: Loreto,F.,Harley,P.C.,DiMarco,G.,Sharkey,T.D.,1992.Estimationofmesophyll evaluatingtherolesofbiomechanics,hydraulics,veingeometry,andbudpacking. conductancetoCO2fluxbythreedifferentmethods.PlantPhysiol.98,1437–1443. Am.J.Bot.104,354–366. https://doi.org/10.1104/pp.98.4.1437.URL:http://www.plantphysiol.org/content/ Greenwood,D.,2005.Leafmarginanalysis:taphonomicconstraints.Palaios20,498–505. 98/4/1437.abstract. Greenwood,D.,Wilf,P.,Wing,S.,Christophel,D.,2004.Paleotemperatureestimation Markwick,P.J.,1998.FossilcrocodiliansasindicatorsofLateCretaceousandCenozoic usingleaf-marginanalysis:isAustraliadifferent?Palaios19,129–142. climates:implicationsforusingpalaeontologicaldatainreconstructingpalaeocli- Grein,M.,Konrad,W.,Wilde,V.,Utescher,T.,Roth-Nebelsick,A.,2011.Reconstruction mate.Palaeogeogr.Palaeoclimatol.Palaeoecol.137,205–271.https://doi.org/10. ofatmosphericCO2duringtheearlymiddleEocenebyapplicationofagasexchange 1016/S0031-0182(97)00108-9.URL:http://www.sciencedirect.com/science/ modeltofossilplantsfromtheMesselFormation,Germany.Palaeogeogr. article/pii/S0031018297001089. Palaeoclimatol.Palaeoecol.309,383–391. Maxbauer,D.P.,Royer,D.L.,LePage,B.A.,2014.HighArcticforestsduringthemiddle Grein,M.,Roth-Nebelsick,A.,Wilde,V.,2010.Carbonisotopecompositionofmiddle EocenesupportedbymoderatelevelsofatmosphericCO2.Geology42,1027–1030. EoceneleavesfromtheMesselPit,Germany.Palaeodiversity3,1–7. McDonald,P.G.,Fonseca,C.R.,Overton,J.M.,Westoby,M.,2003.Leaf-sizedivergence Haworth,M.,Elliott-Kingston,E.,McElwain,J.,2011.ThestomatalCO2proxydoesnot alongrainfallandsoil-nutrientgradients:isthemethodofsizereductioncommon saturateathighatmosphericCO2concentrations:evidencefromstomatalindexre- amongclades?Funct.Ecol.17,50–57.https://doi.org/10.1046/j.1365-2435.2003. sponsesofAraucariaceaeconifers.Oecologia167,11–19. 00698.x. 10