ebook img

Fossil angiosperm wood and its host deposits from the periphery of a dominantly effusive ancient PDF

14 Pages·2010·3.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fossil angiosperm wood and its host deposits from the periphery of a dominantly effusive ancient

(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:5)(cid:3)(cid:4)(cid:11)(cid:12)(cid:13)(cid:14)(cid:7)(cid:15)(cid:3)(cid:3)(cid:16)(cid:7)(cid:8)(cid:9)(cid:16)(cid:7)(cid:5)(cid:17)(cid:4)(cid:7)(cid:18)(cid:3)(cid:4)(cid:17)(cid:7)(cid:16)(cid:12)(cid:11)(cid:3)(cid:4)(cid:5)(cid:17)(cid:4)(cid:7)(cid:19)(cid:13)(cid:3)(cid:14) (cid:17)(cid:18)(cid:12)(cid:7)(cid:11)(cid:12)(cid:13)(cid:5)(cid:11)(cid:18)(cid:12)(cid:13)(cid:20)(cid:7)(cid:3)(cid:19)(cid:7)(cid:8)(cid:7)(cid:16)(cid:3)(cid:14)(cid:5)(cid:9)(cid:8)(cid:9)(cid:17)(cid:6)(cid:20)(cid:7)(cid:12)(cid:19)(cid:19)(cid:21)(cid:4)(cid:5)(cid:22)(cid:12)(cid:7)(cid:8)(cid:9)(cid:23)(cid:5)(cid:12)(cid:9)(cid:17)(cid:7)(cid:22)(cid:3)(cid:6)(cid:23)(cid:8)(cid:9)(cid:3) (cid:24)(cid:25)(cid:3)(cid:21)(cid:11)(cid:3)(cid:22)(cid:4)(cid:26)(cid:27)(cid:7)(cid:18)(cid:3)(cid:13)(cid:20)(cid:7)(cid:28)(cid:3)(cid:6)(cid:23)(cid:8)(cid:9)(cid:5)(cid:23)(cid:7)(cid:29)(cid:3)(cid:14)(cid:11)(cid:6)(cid:12)(cid:30)(cid:31)(cid:7) (cid:6)(cid:5)(cid:10)(cid:3)(cid:23)(cid:12)(cid:9)(cid:12)!"(cid:3)(cid:15)(cid:12)(cid:13) #(cid:5)(cid:3)(cid:23)(cid:12)(cid:9)(cid:12)(cid:31)(cid:7)(cid:29)$(cid:12)(cid:23)(cid:18)(cid:7)%(cid:12)(cid:11)(cid:21)&(cid:6)(cid:5)(cid:23)’((cid:7)(cid:4)(cid:20)(cid:4)(cid:17)(cid:12)(cid:14)(cid:8)(cid:17)(cid:5)(cid:23)(cid:4)(cid:31)(cid:7)(cid:22)(cid:3)(cid:6)(cid:23)(cid:8)(cid:9)(cid:3)(cid:6)(cid:3)(cid:10)(cid:20)(cid:31) (cid:10)(cid:12)(cid:3)(cid:23)(cid:18)(cid:13)(cid:3)(cid:9)(cid:3)(cid:6)(cid:3)(cid:10)(cid:20)(cid:7)(cid:8)(cid:9)(cid:16)(cid:7)(cid:17)(cid:8)(cid:11)(cid:18)(cid:3)(cid:9)(cid:3)(cid:14)(cid:20) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:7)(cid:3)(cid:4)(cid:3)(cid:8)(cid:3)(cid:9)(cid:10)(cid:11)(cid:8)(cid:3)(cid:12)(cid:13)(cid:7)(cid:8)(cid:3)(cid:11) (cid:14)(cid:3)(cid:15)(cid:15)(cid:14)(cid:13)(cid:16)(cid:17)(cid:10)(cid:18) (cid:19)(cid:20)(cid:8)(cid:21)(cid:22)(cid:23) (cid:15)(cid:24)(cid:16)(cid:7)(cid:4)(cid:3)(cid:25) AvarietyoffossilwoodsoccuronthenorthernmarginoftheDoupovskéhoryVolcanicComplexinthenorthwestern partoftheCzechRepublic.Thewoodswereburiedbythreedifferentprocessesreflectingthreedifferentsettings.First,a largeareabetweenthetownsofKadaňandKláštereciscoveredbyanupto100mthicksequenceoflaharanddebrisava- lanchedeposits.TheseflowsandavalanchesgatheredwoodofLiriodendron,Lauraceae,Platanus,Cercidiphyllum, ?CraigiaandStyracaceaefromboththevolcaniccomplexslopesandadjacentplains.Second,arichassemblageoffos- silwoodswiththermophilouselementssuchasLauraceaeandpalmswaspreservedonthenorthernvolcaniccomplex peripherybyaStrombolianeruptionofamonogeniccone.Third,ashallowlakeformedtothesideofthevolcaniccom- plex,wherePlatanustrunkswerefossilizedinthetravertine.ThewoodofLiriodendronhasneverbeenpreviouslyre- cordedinthelocalitiesrepresentingvolcaniccomplexfoothills,butiscommoninthelocallahardeposits.Thisdistribu- tion leads us to hypothesize that Liriodendron forests dominated higher topographic levels of the Doupovské hory VolcanicComplex,reaching,butprobablynotexceeding1000ma.s.l.•Keywords:fossilangiospermwood,systematic palaeobotany, volcanology, taphonomy, geochronology, Tertiary, Czech Republic. SAKALA,J.,RAPPRICH,V.&PÉCSKAY,Z.2010.Fossilangiospermwoodanditshostdepositsfromtheperipheryofa dominantlyeffusiveancientvolcano(DoupovskéhoryVolcanicComplex,Oligocene-LowerMiocene,CzechRepub- lic): systematics, volcanology, geochronology and taphonomy. Bulletin of Geosciences 85(4), 617–629 (5 figures). CzechGeologicalSurvey,Prague.ISSN1214-1119.ManuscriptreceivedApril21,2010;acceptedinrevisedformSep- tember 22, 2010; published online November 12, 2010; issued December 20, 2010. JakubSakala,CharlesUniversity,FacultyofScience,InstituteofGeologyandPalaeontology,Albertov6,12843Praha 2, Czech Republic; [email protected] • Vladislav Rapprich, Czech Geological Survey, Klárov 3, 118 21 Prague, CzechRepublic;[email protected]•ZoltánPécskay,InstituteofNuclearResearch,HungarianAcademy of Sciences, Bem tér 18/C, H-4001 Debrecen, Hungary; [email protected] Volcanicareasoftenprovideexcellentsettingsforpreserva- itsvicinity,relatedtoOligocenetoearlyMioceneactivity tionoffossilmaterial,especiallyproducingwhenfinepyroc- oftheDoupovskéhoryVolcanicComplex(DHVCinthe lastic material predominate. Effusive volcanic activity is following text). Prakash et al. (1971) and Sakala & muchlessconducivetothefossilizationoforganicmaterial. Privé-Gill (2004) described eight different wood types Lava-builtvolcanoesandvolcaniccomplexesundergoweath- fromthisarea,hencethelocalityisoneoftherichestsites ering and solid rock decay processes. Weathering products offossilangiospermwoodinCentralEurope(Sakala2006, maysubstitutetheroleofpyroclasticdepositsindominantly 2007). Temporary exposures excavated in the last fifteen effusivevolcanoes.Consequentlyincombinationwiththeto- years,includingconstructionofthenewhospitalanddig- pography,debrisavalanches,debrisflowsandmudflowsmay ging activity for gas pipe and gas-fixtures in Kadaň, of- beproduced.Suchsecondarysedimentaryprocessesburyre- fered the opportunity for new sampling and reassessment mainsofbothfaunaandflora(e.g.,Cameron&Pringle1986). ofthetaphonomicmodelfortheareawhichwasbelieved FossilwoodisrelativelycommonintheTertiaryofthe tohavebeendominatedbydiatremefaciesofmaarvolca- northwestern part of the Czech Republic. Most are noes (e.g., Kopecký 2010). The aim of our research is to Cupressaceaes.l.(e.g.,Teodoridis&Sakala2008).Angio- understandhowwoodfragmentswerefossilizedinsettings spermwoodisfrequentlyfoundinthetownofKadaňand of a dominantly effusive volcanic complex. (cid:12)(cid:20)(cid:13)(cid:10)(cid:27)(cid:29)(cid:30)(cid:31)(cid:27) (cid:29)!"#$$(cid:30)%&’()*(cid:30)(cid:27)(cid:27)+(cid:26) (cid:26)(cid:27)(cid:28) (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:23) (cid:2)(cid:5)(cid:10)(cid:21)(cid:13)(cid:12)(cid:7)*+ Location of the Doupovské hory Volcanic Complex. )(cid:12)(cid:3)(cid:6)(cid:3)(cid:10)(cid:5)(cid:23)(cid:8)(cid:6)(cid:7)(cid:4)(cid:12)(cid:17)(cid:17)(cid:5)(cid:9)(cid:10) tivity continued until the Early Miocene (ca 29–22 Ma: Rapprich & Holub 2008). This younger stage formed an The origin of the Doupovské hory Volcanic Complex extensivecomplexoffoidite/basanite/tephritelavasequen- (DHVC – Fig. 1) is associated with the formation of the cesupto500mthick(Hradecký1997a,Rapprich&Holub continentalEger(Ohře)Grabenandascentofmantlederi- 2008).Individuallavaunitsareoftenaccompaniedbyvol- vedmelts(e.g.,Ulrychetal.2002)alongtheboundarybet- caniclasticdebrites.Thesecoarsegrainedsedimentsarein- ween the Saxothuringian and Teplá-Barrandian Domains terpreted as lahar or debris avalanche deposits (e.g., Hra- oftheBohemianmassif(Mlčoch2003).Acomplexmosaic decký 1997b). Hradecký (1997b) described these of crystalline rocks (including amphibolite, paragneisse, accumulations from the southern and western margins of orthogneisse,granulite,phylite,variscangranite,etc.)form theDHVC.Inaddition,wehavedocumentedlahardepo- thebasementoftheDHVC(Mlčoch&Konopásek2010). sitsalsoonthenorthernmarginsoftheDHVC.Generally, TheentireDHVCrepresentsanerosionalrelicofamulti- the lahar deposits occur in various stratigraphic positions phasevolcaniccomplex.Activitywasinitiatedintheearli- withintheDHVC,butthedebritesonthenortheasternmar- est Oligocene (mammal zone MP-21: Fejfar & Kaiser ginspre-datethelavasoftheÚhošťHill(Rapprich2007). 2005).TheearlyDHVCfine-grainedvolcaniclasticswere TheoldestlavaatthebaseoftheÚhošťHillwasdatedby produced by basaltic eruptions of the Strombolian and the K-Ar method as 28.66 ±1.06 Ma (Rapprich & Holub phreato-magmaticstyle.Pyroclasticmaterialfromthisac- 2008). On the northeastern periphery of the DHVC, tivity was deposited in subaerial, swampy and lacustrine a group of eroded remnants of monogenetic cones environments with a total thickness reaching 80 m (Hra- (23–20 Ma: this paper) occur and appear to represent the decký1997a).Thesedepositscurrentlycropoutontheeas- most recent volcanic activity of the DHVC in the Lower ternandnortheasternmarginsoftheDHVC.Thevolcanic Miocene(Fig.2).Thesedimentaryinfill(includingcoalse- activity later became predominantly effusive in character ams)oftheEgerGrabenshortlypostdatesthevolcanicac- (Rapprich&Holub2008),associatedwithweakStrombo- tivityoftheDHVC.Thissedimentaryperiodisrepresented lianandpossiblyalsoHawaiianeruptions.Theeffusiveac- tothenortheastoftheDHVCbytheMioceneMostBasin. (cid:26)(cid:27), (cid:25)(cid:26)(cid:27)(cid:3)(cid:28)(cid:29)(cid:26)(cid:27)(cid:26)(cid:4)(cid:26)(cid:5)(cid:6)(cid:9)(cid:26)(cid:4)(cid:17)(cid:15)(cid:30)(cid:10)(cid:13)(cid:13)(cid:7)(cid:4)(cid:9)(cid:26)(cid:8)(cid:31)(cid:7)(cid:10)(cid:13) (cid:5)!"(cid:9)#(cid:10)(cid:10)$(cid:9)(cid:26)(cid:8)$(cid:9)(cid:7)(cid:6)(cid:13)(cid:9)%(cid:10)(cid:13)(cid:6)(cid:9)$(cid:5) (cid:10)(cid:13)(cid:7)(cid:6)(cid:13)(cid:9)(cid:11)!(cid:10)"(cid:9)(cid:6)%(cid:5)(cid:9) (cid:5)!(cid:7) %(cid:5)!&(cid:9)(cid:10)(cid:11)(cid:9)(cid:26)(cid:9)$(cid:10)"(cid:7)(cid:8)(cid:26)(cid:8)(cid:6)(cid:4)&(cid:9)(cid:5)(cid:11)(cid:11)(cid:3)(cid:13)(cid:7)’(cid:5)(cid:9)(cid:26)(cid:8)(cid:14)(cid:7)(cid:5)(cid:8)(cid:6)(cid:9)’(cid:10)(cid:4)(cid:14)(cid:26)(cid:8)(cid:10) (cid:2)(cid:5)(cid:10)(cid:21)(cid:13)(cid:12)(cid:7)-+ SimplifiedgeologicalmapofthenortheasternperipheryoftheDHVC(adaptedfromtheDigitalGeologicalmapoftheCzechRepublic 1:50,000scaleavailableonhttp://www.geology.cz/extranet/geodata/mapserverandmodifiedwithrespecttonewdataandobservations)andlocationof samplingsites:1–ZadnívrchHill,2–ProstřednívrchHill,3–Vernéřov,4–Nechranice,5–Zvoníčkov.DigitalElevationModelilluminatedfrom southwest. #(cid:8)(cid:17)(cid:12)(cid:13)(cid:5)(cid:8)(cid:6)(cid:7)(cid:8)(cid:9)(cid:16)(cid:7)(cid:14)(cid:12)(cid:17)(cid:18)(cid:3)(cid:16)(cid:4) ATOMKI Laboratories, Debrecen, Hungary. Potassium concentration was measured using a digitized flame pho- New specimens of silicified and calcified wood were tometer,CORNING480machinewithaLiinternalstan- thin-sectionedincompliancewiththestandardtechniques dard. The analyses were controlled by inter-laboratory andstudiedusingcompoundlightmicroscopy.Anatomical standardsAsia1/65,LP-6,HD-B1andGL-O.Argonwas descriptionsareinaccordancewiththeIAWAHardwood extracted from the samples by high frequency induction List(IAWACommittee1989).Thethinsectionsdescribed heating.A38Ar-spikewasintroducedintothesystemviaa herearepartlyhousedintheNationalMuseuminPrague gaspipettebeforethedegassingbegan.Theisotopicratios (thosedescribedoriginallybyPrakashetal.1971andepi- were measured on a 15 cm radius magnetic sector-type type of Cercidiphylloxylon kadanense), and partly in the mass spectrometer under static mode, built in Debrecen, Chlupáč Museum of Earth History in the Faculty of Sci- Hungary.Balogh(1985)andOdin(1982)describedinde- ence of Charles University in Prague (new specimens). tailthemethodsappliedhere.Thecalculationofageswas The approximate age of the lahar deposits was deter- based on atomic constants suggested by Steiger & Jäger mined by their position beneath a lava dated 28.66 ±1.06 (1977). Analytical errors are quoted for the 68% confi- Ma (K-Ar: Rapprich & Holub 2008), but the age of the dence level (one standard deviation). monogenetic volcanism on the northern periphery of the DHVC was not known. Three samples of lavas from ,(cid:20)(cid:4)(cid:17)(cid:12)(cid:14)(cid:8)(cid:17)(cid:5)(cid:23)(cid:7)(cid:11)(cid:8)(cid:6)(cid:8)(cid:12)(cid:3)&(cid:3)(cid:17)(cid:8)(cid:9)(cid:20) monogenic volcanoes (Šumná volcano, Blzeňský vrch Hill, Jelení vrch Hill) on the northern periphery of the DHVC were dated using the K-Ar method. All the three AngiospermwoodfromtheDHVC,bothnewlyfoundspe- samplesweremeasuredasbulk-rocks.Additionally,glass cimens and those described by Prakash et al. (1971) and and plagioclase fractions were separated from the Sakala&Privé-Gill(2004),canbesubdividedintoseven groundmass of the Jelení vrch Hill sample to resolve the units called “wood types” sensu Wiemann et al. (1998, problemoflowpotassiumcontentinthebulk-rocksample. p.85).Thesearelistedusinginformalnamesanddescribed Geochronological analyses were carried out in the in the following section. (cid:26)(cid:27)+ (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:23) includesbothtransverseandradialviews(Fig.4A).Other diagnostic features, such as oval opposite intervessel pits are visible in the holotype (Prakash et al. 1971, fig. 33) as well as in the new specimens, e.g., 18/98 (Fig. 4C). Leaves and fruits of Liriodendron are un- knownfromtheDHVC,butthereareoccurrencesofLi- riodendronhaueriintheČeskéstředohoříMts(Kvaček &Teodoridis2007). (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:5)(cid:12)(cid:5)(cid:11) ((cid:26)(cid:3)!(cid:7)(cid:8)(cid:10))&(cid:4)(cid:10)(cid:8) Family Lauraceae GenusLaurinoxylonFelix emend. Dupéronet al. (cid:2)(cid:5)(cid:10)(cid:21)(cid:13)(cid:12)(cid:7).+ CalcifiedtrunkofLiriodendroninthelahardepositsexposed during diggingwork for gas-pipes in Kadaň, southern slope of the Laurinoxylon czechensePrakash, Březinová & Bůžek Prostřední vrch Hill. Figure 4D–G (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:5)(cid:10)(cid:5)(cid:11) ((cid:7)!(cid:7)(cid:10)$(cid:5)(cid:8)$!(cid:10))&(cid:4)(cid:10)(cid:8) Material.–Kadaň-ZadnívrchCNB-2(type);?Nechranice 74/04. Family Magnoliaceae Description.–Wooddiffuse-porous,growthringboun- GenusLiriodendroxylonPrakash, Březinová & Bůžek daries distinct, vessels mostly solitary and in radial (and oblique) multiples of 2–3, predominantly simple Liriodendroxylon tulipiferumPrakash, Březinová perforation plates, scalariform perforation plates with & Bůžek 10–15barsrarelypresentinnarrowvesselelements,he- Figure 4A–C terocellularrays1-to3-seriatewithsomeenlargedoil/ mucilage cells in the margins, vasicentric axial paren- Material. – Kadaň-Zadní vrch ZV-23 (holotype), 18/98, chyma. 53/02; Vernéřov 57/02, 61/02. Discussion. – Dupéron-Laudoueneix & Dupéron (2005) Description. –Wood diffuse-porous, growth ring bounda- inventoried the fossil woods assigned to the Lauraceae. riesdistinct,vesselsrarelysolitarymostlyinradialmulti- TheoriginalslidesofLaurinoxylondiluviale(Unger)Fe- plesandclusters,scalariformperforationplateswithabout lix, the type species of Laurinoxylon known since 16th 10 bars, opposite intervessel pits with oval outlines, century as ‘Sündfluthholz’ from the phreatomagmatic slightlyheterocellularraysmostly3-to4-seriate,andmar- vent breccia at Jáchymov (north of the DHVC, in the ginal axial parenchyma. Krušné hory Mts/Erzgebirge), were re-discovered in the FrenchMuseumofNaturalHistory(MNHN)inParisand Discussion.–Prakashetal.(1971)notedthatthiswood re-described,togetherwithemendedgenericandspecific type was similar to modern Liriodendron tulipifera L. diagnoses(Dupéronetal.2008).Thefossilwoodbriefly (seeInsideWood2004–onwards).Marginalparenchyma describedherehascharacteristicsofthemorphogenusLau- isvisibleinslideG4049oftheholotypespecimenwhich rinoxylon.Prakashetal.(1971)recognizeditasadistinct (cid:2)(cid:5)(cid:10)(cid:21)(cid:13)(cid:12)(cid:7)/+ A–C–Woodtype1–Liriodendroxylon(A,B:holotypeZV-23ofLiriodendroxylontulipiferum;C:specimen18/98).•A–diffuse-porous woodwithvesselsrarelysolitary,usuallyinmultiplesandterminalparenchymain3-seriatelines,TS/RLS.•B–slightlyheterocellularraysmostly 3–4-seriateandscalariformperforationplateswithabout10bars,TLS.•C–oppositeintervesselpits,RLS.•D–G–Woodtype2–Laurinoxylon (holotypeCNB-2ofLaurinoxylonczechense).•D–diffuse-porouswoodwithparatrachealvasicentricparenchyma,TS.•E–heterocellular1–3-seriate rayswithswollenmarginalcells,TLS.•F–raycellswithoilormucilagecontentinmargin,RLS.•G–detailofasmallvesselelementwithalternate intervessel pits in lower part and scalariform perforation plate in upper part, TLS. • H–M – Wood type 3 – Platanus (H, K: holotype CNB-6 of Platanoxylonbohemicum;I,L,M:holotypeZV-24ofSpiroplatanoxyloneuropeanum;J:holotypeCNB-11ofDryoxylonbohemicum).•H–J–dif- fuse-porouswoodwithdistinctgrowthringsandbroadrays,TS.•K–broadhomocellularraysupto20cellswide,TLS.•L–detailofhomocellularray andexclusivelyscalariformperforationplateswithabout20bars,TLS.•M–helicalthickeningonthetopofavesselelement,TLS.Scalebars=500μm in A, B, D, H–K; 200 μm in E, F, L; 50 μm in C, G, M. (cid:26)-(cid:29) (cid:25)(cid:26)(cid:27)(cid:3)(cid:28)(cid:29)(cid:26)(cid:27)(cid:26)(cid:4)(cid:26)(cid:5)(cid:6)(cid:9)(cid:26)(cid:4)(cid:17)(cid:15)(cid:30)(cid:10)(cid:13)(cid:13)(cid:7)(cid:4)(cid:9)(cid:26)(cid:8)(cid:31)(cid:7)(cid:10)(cid:13) (cid:5)!"(cid:9)#(cid:10)(cid:10)$(cid:9)(cid:26)(cid:8)$(cid:9)(cid:7)(cid:6)(cid:13)(cid:9)%(cid:10)(cid:13)(cid:6)(cid:9)$(cid:5) (cid:10)(cid:13)(cid:7)(cid:6)(cid:13)(cid:9)(cid:11)!(cid:10)"(cid:9)(cid:6)%(cid:5)(cid:9) (cid:5)!(cid:7) %(cid:5)!&(cid:9)(cid:10)(cid:11)(cid:9)(cid:26)(cid:9)$(cid:10)"(cid:7)(cid:8)(cid:26)(cid:8)(cid:6)(cid:4)&(cid:9)(cid:5)(cid:11)(cid:11)(cid:3)(cid:13)(cid:7)’(cid:5)(cid:9)(cid:26)(cid:8)(cid:14)(cid:7)(cid:5)(cid:8)(cid:6)(cid:9)’(cid:10)(cid:4)(cid:14)(cid:26)(cid:8)(cid:10) 0 3 (cid:29) (cid:25) 1 (cid:2) ) 2 4 5 6 " # (cid:26)-(cid:27) (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:23) speciesL.czechense.ItdiffersfromL.diluvialeinhaving DryoxylonSchleideninSchmid generallythinnerrays,mainlyduetonarrowerindividual raycells.Thisdifferenceinraywidthcanpartlybeexplai- Dryoxylon bohemicumPrakash, Březinová & Bůžek nedbytheprocessesoffossilizationwhichcouldproduce Figure 4J moredilatedraycellsinL.diluviale(M.andJ.Dupéron, pers.comm.).ContrarytoPrakashetal.(1971),weobser- 1971 Dryoxylonbohemicumsp.nov.;Prakash,Březinová vedoilcellssimilartothoseinL.diluviale(Fig.4E,F)as- & Bůžek, p. 122, pl. 43, figs 64–67. sociated with ray parenchyma only (but not those amongst fibres) and very rarely scalariform perforation Material. – Kadaň-Zadní vrch CNB-11 (type). platesinnarrowvesselelements(Fig.4G).Therefore,itis not easy to distinguish between these two species. Idio- Description.–Wooddiffuseporous,growthringbounda- blasts (oil/mucilage cells) associated exclusively with riesdistinct,vesselssolitaryorinshortirregularmultiples rays are present in several taxa, e.g., Caryodaphnopsis, withscalariformperforationplatesonly(simpleplatesnot Litsea chinensis or the south-American species of Cin- observed)withabout20bars,sometimeswithspiralthic- namomum (Richter 1987). As vessel-ray pitting is not kenings,homocellularraysupto20cellswideandapotra- preserved,itisnotpossibletousecorrectlytheclassifi- cheal diffuse-in-aggregates and scanty paratracheal vasi- cationsensuRichter(1987).Asaresult,wecannotattri- centric axial parenchyma, rarely crystalliferous. buteourwoodtoanyparticularlivinggenus.Theperip- heryoftheDHVChasyieldedthermophilousfloraswith Discussion.–ThethreespeciesrecognizedbyPrakashet Daphnogene(Kvaček&Teodoridis2007),whichiscon- al.(1971),i.e.,Platanoxylonbohemicum,Plataniniumeu- sidered to be related to the living Cinnamomum cam- ropaeum(=Spiroplatanoxyloneuropeanum)andthevery phora (L.) J. Presl (Kvaček et al. 2004, Kvaček pers. poorly preserved Dryoxylon bohemicum, are very similar comm.). toeachother.Theyallhavelargehomocellularrays,upto 24cellswide,andscalariformperforationplates.Although there are several differences between them (e.g., smaller (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:5)(cid:13)(cid:5)(cid:11) *(cid:4)(cid:26)(cid:6)(cid:26)(cid:8)(cid:3)(cid:13) vesselelementsinPlatanoxylonbohemicumtypespecies) theyallseemtobelongtothesametypeofplatanoidwood Family Platanaceae whoseexactaffinityisuncertain.Wethinkthewoodmust be related to Platanus neptuni (Ettingsh.) Bůžek, Holý & PlatanoxylonAndreánszkyexPrakash, Březinová Z.Kvaček(Sakala2006,Kvaček&Manchester2004),the & Bůžek only member of the Platanaceae present in both volcanic areasoftheDHVCandtheČeskéstředohoříMts(Kvaček Platanoxylon bohemicumPrakash, Březinová & Bůžek & Teodoridis 2007). P. neptuni is otherwise known as a Figure 4H, K nearly complete plant based on foliage branches, isolated leaves, stipules, staminate inflorescences with pollen in 1971 Platanoxylon bohemicum sp. nov.; Prakash, Březi- situandinfructescences(Kvaček2008).Thespecificsys- nová & Bůžek, p. 115, pl. 39, figs 44, 46. tematicpositionofP.neptuniwithinPlatanusisexpressed by a distinct subgenus Glandulosa (see in Kvaček et al. Material.–Kadaň-ZadnívrchCNB-6(type),73/03;?Ne- 2001,table1)andcorrespondswelltothespecificcharac- chranice 109/05, 114/06; ?Vernéřov 64/02. ter of our fossil wood (see here below). ThefossilwoodrelatedtoPlatanusisusuallyclassified under the mophogenera Platanoxylon or Plataninium. As SpiroplatanoxylonSüss alreadynoticedbyBrett(1972)andWheeler&Manchester (2002, p. 97), the classification of fossil Platanus-like Spiroplatanoxyloneuropeanum(Prakash, Březinová woodsisnotasimplematterbecausetheygenerallydiffer & Bůžek) Süss from the extant Platanus. Firstly, fossil platanoid wood Figure 4I, L, M often has scalariform perforation plates only (Wheeler 1995). The only living representative of Platanus which 1971 Plataninium europeanum sp. nov.; Prakash, Březi- bears some resemblence with respect to this feature i.e. nová & Bůžek, p. 120, pl. 42, figs 59–63. having a higher portion of scalariform to simple perfora- 2007 Spiroplatanoxyloneuropeanum(Prakash,Březinová tion plates, is P. kerrii Gagnep., native to Laos and Viet- & Bůžek) Süss comb. nov.; Süss, p. 12. nam (Wheeler 1995). Contrary to Prakash et al.’s (1971) description, and in accordance with Süss & Müller-Stoll Material. – Kadaň-Zadní vrch ZV-24 (type, CNB-11). (1977,p.50),wehavenotobservedanysimpleperforation (cid:26)-- (cid:25)(cid:26)(cid:27)(cid:3)(cid:28)(cid:29)(cid:26)(cid:27)(cid:26)(cid:4)(cid:26)(cid:5)(cid:6)(cid:9)(cid:26)(cid:4)(cid:17)(cid:15)(cid:30)(cid:10)(cid:13)(cid:13)(cid:7)(cid:4)(cid:9)(cid:26)(cid:8)(cid:31)(cid:7)(cid:10)(cid:13) (cid:5)!"(cid:9)#(cid:10)(cid:10)$(cid:9)(cid:26)(cid:8)$(cid:9)(cid:7)(cid:6)(cid:13)(cid:9)%(cid:10)(cid:13)(cid:6)(cid:9)$(cid:5) (cid:10)(cid:13)(cid:7)(cid:6)(cid:13)(cid:9)(cid:11)!(cid:10)"(cid:9)(cid:6)%(cid:5)(cid:9) (cid:5)!(cid:7) %(cid:5)!&(cid:9)(cid:10)(cid:11)(cid:9)(cid:26)(cid:9)$(cid:10)"(cid:7)(cid:8)(cid:26)(cid:8)(cid:6)(cid:4)&(cid:9)(cid:5)(cid:11)(cid:11)(cid:3)(cid:13)(cid:7)’(cid:5)(cid:9)(cid:26)(cid:8)(cid:14)(cid:7)(cid:5)(cid:8)(cid:6)(cid:9)’(cid:10)(cid:4)(cid:14)(cid:26)(cid:8)(cid:10) platesinoursamplesofplatanoidwood.Secondly,asSüss foliage,fruits,seeds,staminateinflorescences,andinsitupo- & Müller-Stoll (1977) described, some platanoid woods llen(Kvaček2008). havespiralthickeninginthevesselelements.Thisfeature is unknown among extant Platanus woods (Wheeler & (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:5)(cid:15)(cid:5)(cid:11) ,(cid:4)"(cid:3)(cid:13) Manchester 2002). Süss (2007) recently created a new morphogenus,Spiroplatanoxylon,forplatanoidwoodwith spiral thickening and re-interpreted Platanoxylon and Family Ulmaceae Plataninium from Kadaň as belonging to this genus. We can confirm the presence of spiral thickenings (Fig. 4M) GenusUlmusL. and rare prismatic crystals in axial parenchyma cells in PlataniniumbutnotinPlatanoxylon.Therefore,weusethe Ulmussp. denominationSpiroplatanoxylononlyforthePlataninium Figure 5C typeofwoodinwhichweobservedspiralthickeningand crystals; as a precaution, we also keep the three Material. – Nechranice 75/04. morphospeciesasseparatedunits.However,wethinkthey all represent the same botanical species. Description. – A small branch, 2.5 cm in diameter, with barkpreserved.Woodring-porous,growthringboundaries distinct,earlywoodvesselsmainlysolitary,latewoodves- (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:5)(cid:14)(cid:5)(cid:11) +(cid:5)!(cid:14)(cid:7)$(cid:7) %&(cid:4)(cid:4)(cid:10))&(cid:4)(cid:10)(cid:8) selsgrouped,formingtypicalwavytangentialbands,wide exclusively homocellular rays. Family Cercidiphyllaceae Discussion.–Thissinglepieceofwoodwasalreadymenti- GenusCercidiphylloxylonPrakash,Březinová&Bůžek oned by Sakala (2006). Unfortunately, the very poor pre- servation only allows its safe attribution to elm wood Cercidiphylloxylon kadanensePrakash, Březinová thanks to the diagnostic pattern seen in cross-section and & Bůžek thehomocellularraysseeninradialsection.Acomparison Figure 5A, B with the fossil elm wood described from Bílina (Sakala 2002) or with other Ulmaceae (Wheeler & Manchester Material.–Kadaň-ZadnívrchZV-12(holotype),G8113(= 2007)isnotpossible.IntheTertiaryofnorthwesternBohe- 23/98) (epitype). mia, the genus Ulmus is represented by 2 species: U. fis- cheriasleavesinvolcanicareasofboththeDHVCandthe Description.–Wooddiffuse-porous,growthringbounda- ČeskéstředohoříMtsandU.pyramidalisintheMostBasin riesdistinct,vesselsmostlysolitary,withangularoutline, based on leaves and fruits (Kvaček & Teodoridis 2007). scalariform perforation plates with about 40 bars, hetero- cellular, mostly 2–3-seriate rays with uniseriate marginal (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:5)(cid:16)(cid:5)(cid:11)(cid:5)(cid:17)+!(cid:26)(cid:7)(cid:31)(cid:7)(cid:26) rows(tails),whichsometimesinterconnectseveralmulti- seriate ray portions. Family Malvaceae s.l. Discussion. – This wood type was originally described by Prakashetal.(1971)andlaterreviewedindetailbySakala& GenusCraigiaW.W. Smith & W.E. Evans Privé-Gill(2004)withthedefinitionofanepitypeandcom- parativestudywiththeextantCercidiphyllaceaeandHama- aff.Craigiasp. melidaceae.Itwasnoticedthat1)Cercidiphylloxylonkada- Figure 5D–G nense slightly differed from extant Cercidiphyllum Sieb. & Zucc.,2)itwastheoldestrecordoftrueCercidiphyllumfossil Material. – Kadaň-Zadní vrch 72/03; Nechranice 70/03, woodand3)anolderrecordofCercidiphyllum-likewoodof 78/03, 84/04, 89/04, 90/04. Paleocene/Eoceneagehadtoberelatedtoextinctgenerawith leavesofTrochodendroidesBerryemend.Craneandfruitsof Description.–Woodsemi-ringporous,growthringboun- the Nyssidium-type (Sakala & Privé-Gill 2004). Our fossil daries distinct, marked by marginal parenchyma, early- woodmostprobablyisthewoodofCercidiphyllumcrenatum woodvesselssolitaryorinshortradialmultiplesof2–3, (Unger)R.W.BrownwhichoccursinallOligocenelocalities latewoodvesselsthick-walled,mainlyinradialmultiples in the České středohoří Mts (Kvaček & Teodoridis 2007). of2–3,bothwithsimpleperforationplates,stronglyhe- However,itsoccurrenceintheDHVChasnotbeenprovenso terocellular rays up to 10 cells wide with tile cells far.C.crenatumisknownasanearlycompleteplantbasedon of the Pterospermum type, apotracheal diffuse to (cid:26)-(cid:31) (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:23) diffuse-in-aggregates and paratracheal vasicentric axial Material. – Kadaň-Zadní vrch CNB-3 (type). parenchyma. Description.–Wooddiffuseporous,growthringbounda- Discussion.–ItwasrecentlysuggestedbySakala(2006)that riesdistinct,vesselssolitary,butmostlyinclustersandra- thisnewlydiscoveredfossilwoodcouldbeattributedtoMal- dial multiples, scalariform perforation plates with about vaceaes.l.duetoitsdiagnostictilecellsintherays,andtothe 15–20 bars, heterocellular uniseriate and multiseriate extant genus Craigia, whose wood was described by Man- (mostly 3- to 4-seriate) rays, axial parenchyma diffuse or chesteretal.(2006).TilecellsoccurinMalvaceaes.l.andare diffuse-in-aggregates, chambered axial parenchyma with sometimescitedasarareexampleofsynapomorphybasedon prismatic crystals often present. woodanatomy(Olson2005,p.514);however,theyarealso present in several species of Hopea from the Dipterocarpa- Discussion. – The difference in vessel arrangement bet- ceae(orderMalvales)(e.g.,Manchesteretal.2006,Selmeier weenCoryloxylonnemejciiandC.tertiarumdonotseem 2000,table3).Infact,theCzechwoodtypeissimilartoboth tobesystematicallysignificantandcanbeexplainedbyin- the extant Craigia and extinct Chattawaya Manchester traspecificorindividualvariability.Weconsiderthatboth (1980)initsvesseldispositionandcharacteroftilecells.Un- woods represent the same wood type, the affinities of fortunately,wedidnotobserveanyhelicalthickeningtypical which need re-evaluation. We did not observe the aggre- of Cragia; the seemingly helically thickened vessels in one gateraysdescribedbyPrakashetal.(1971)sotheconnec- specimen(Fig.5G)donotrepresenttruespiralsbutonly“co- tion to Corylus becomes questionable. Both woods have alescent apertures” of intervessel pits (E.A. Wheeler, pers. features seen in the Styracaceae: exclusively scalariform comm.).Amongfossilrepresentatives,thehelicalthickening perforationplates,poressolitaryorinmultiples,bothuni- is only present in Reevesia japonoxyla Terada & Suzuki and multiseriate heterocellular rays, diffuse and (1998).Ontheotherhand,wedidnotobservecrystals,which diffuse-in-aggregates axial parenchyma and prismatic areverytypicalofChattawaya(Manchester1980,Wheeler& crystalsorsilica(Dickison&Phend1985).Prismaticcrys- Manchester 2002). Therefore, we call our fossil wood “aff. tals are useful for distinguishing between species within Craigiasp.”,reflectingthesimilaritytothisgenusexceptfor the extant Styracaceae. These are present only in Bruin- the typical helical thickening. Although unknown in the smia,HalesiaandStyrax:Bruinsmiadiffersstronglyfrom DHVC, Craigia represents an important and abundant ele- our wood in lacking growth rings, but a clear distinction mentintheČeskéstředohoříMtsandalsointheMostandSo- betweenHalesiaandStyraxisnotpossiblebasedonlyon kolovbasins(Kvaček&Teodoridis2007).Itisgenerallypre- wood (Dickison & Phend 1985). In the David A. Kribs sent as dispersed fruit valves, but also as complete fruits at wood collection housed in the N.C. State University, we variousstagesofmaturity,dispersedflowersandflowerbuds observedsimilarstructureintheextantHalesiamacgrego- withpolleninsitu,oftentogetherwiththeaccompanyingfoli- rii Chun (SJRw 29811) from China, however, it lacked ageofDombeyopsislobata(Kvaček2008). crystals.Therefore,wearenotabletodistinguishbetween StyraxandHalesia.IntheTertiaryofnorthwesternBohe- mia,theonlyrecordofStyracaceaesofarcomesfromthe (cid:2)(cid:3)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:5)(cid:18)(cid:5)(cid:11) +(cid:10)!&(cid:4)(cid:10))&(cid:4)(cid:10)(cid:8) Early Miocene Cypris formation of the Sokolov Basin – therearefruitsdesignatedasSinojackiasp.byBůžeketal. Family Styracaceae 1996(recordedasHalesiacrassainKvaček&Teodoridis 2007). GenusCoryloxylonPrakash, Březinová & Bůžek (cid:28)(cid:3)(cid:6)(cid:23)(cid:8)(cid:9)(cid:3)(cid:6)(cid:3)(cid:10)(cid:20)(cid:7)(cid:8)(cid:9)(cid:16)(cid:7)(cid:4)(cid:12)(cid:16)(cid:5)(cid:14)(cid:12)(cid:9)(cid:17)(cid:3)(cid:6)(cid:3)(cid:10)(cid:20) Coryloxylon nemejciiPrakash, Březinová & Bůžek Figure 5H–J Materialforstudywassampledfromfivelocalities(Fig.2) 1971 Coryloxylonnemejciisp.nov.;Prakash,Březinová& representingthreedifferentvolcanogenicsedimentaryde- Bůžek, pp. 116–118, pl. 40, figs 48–52. posits: Material. – Kadaň-Zadní vrch CNB-4 (type). (cid:19)(cid:20)(cid:4)(cid:21)(cid:22)(cid:5)(cid:23)(cid:24)(cid:25)(cid:26)(cid:27)(cid:5)(cid:28)(cid:24)(cid:3)(cid:29)(cid:6)(cid:30)(cid:9)(cid:4)(cid:21)(cid:22)(cid:5)(cid:23)(cid:24)(cid:25)(cid:26)(cid:27)(cid:5)(cid:31)(cid:9)(cid:24)(cid:21) (cid:30)(cid:3)(cid:23) !"(cid:3)(cid:25)(cid:20)"#(cid:6)#(cid:9)(cid:29)(cid:5)(cid:10)(cid:27)(cid:5)(cid:12)(cid:5)(cid:20)(cid:21)(cid:4)(cid:5)(cid:13)(cid:5)#(cid:21)(cid:5)$#%&(cid:5)(cid:12)’ Coryloxylon tertiarumPrakash, Březinová & Bůžek Figure 5K–M Localities1,2and3aresituatedwithinthevolcaniclastic 1971 Coryloxylon tertiarum sp. nov.; Prakash, Březinová debritesoftheDHVC(Fig.2).Thelocalitieswereartifi- & Bůžek, pp. 118–120, pl. 41, figs 53–58. cial trenches (length × width × depth = 10 × 1 × 1 m at (cid:26)- (cid:25)(cid:26)(cid:27)(cid:3)(cid:28)(cid:29)(cid:26)(cid:27)(cid:26)(cid:4)(cid:26)(cid:5)(cid:6)(cid:9)(cid:26)(cid:4)(cid:17)(cid:15)(cid:30)(cid:10)(cid:13)(cid:13)(cid:7)(cid:4)(cid:9)(cid:26)(cid:8)(cid:31)(cid:7)(cid:10)(cid:13) (cid:5)!"(cid:9)#(cid:10)(cid:10)$(cid:9)(cid:26)(cid:8)$(cid:9)(cid:7)(cid:6)(cid:13)(cid:9)%(cid:10)(cid:13)(cid:6)(cid:9)$(cid:5) (cid:10)(cid:13)(cid:7)(cid:6)(cid:13)(cid:9)(cid:11)!(cid:10)"(cid:9)(cid:6)%(cid:5)(cid:9) (cid:5)!(cid:7) %(cid:5)!&(cid:9)(cid:10)(cid:11)(cid:9)(cid:26)(cid:9)$(cid:10)"(cid:7)(cid:8)(cid:26)(cid:8)(cid:6)(cid:4)&(cid:9)(cid:5)(cid:11)(cid:11)(cid:3)(cid:13)(cid:7)’(cid:5)(cid:9)(cid:26)(cid:8)(cid:14)(cid:7)(cid:5)(cid:8)(cid:6)(cid:9)’(cid:10)(cid:4)(cid:14)(cid:26)(cid:8)(cid:10) Prostřednívrch)andearthworks(length×width×depth= thevalleyamidsthillsrepresentingremnantsoftheDHVC 300×200×2matVernéřov,300×100×1-3and300× lava sequences, but the contact is not exposed at present. 200×3matZadnívrch).Similardepositswereobservedin WecategorizethissiteasEarlyDHVCvolcaniclasticson allthreelocalities.Thesedimentsformsubhorizontalbeds thebasisofdataobtainedduringthelate18thandearly19th upto2mthick,representedbyapoorlysortedpolymictic century,whenceladonitewasexploitedintheareaofZvo- (fragments of various types of basaltic rocks), níčkov and eastern foothills of the Úhošť Hill. Großkopf coarse-grained(basalticbouldersupto40cmindiameter) (1932)andMüller(1936)describedthesedimentshosting matrix-supporteddebrite.Thevolcanigenicmatrixconsists the travertine as a sequence of alternating layers of tuffs, offinebasalticdetritusandclinopyroxenecrystals.Theto- claysandlimestone.Thelithologicalschemeissupported talthicknessofthelahardepositsobservedontheJezerní by a 114 m deep borehole (Müller 1936). hora Hill reaches 100 m. Xenolithic clasts occur rarely, they were found in some depositional units of debrites )(cid:12)(cid:3)(cid:23)(cid:18)(cid:13)(cid:3)(cid:9)(cid:3)(cid:6)(cid:3)(cid:10)(cid:20) aroundKlášterecandtheyconsistofhorizontallystretched violetclayswithquartzcrystals,mostprobablygneissar- gillized by weathering already prior to the volcanic acti- Threemonogeneticvolcanoesfromthelatestphaseofvol- vity.Thedepositscontainabundanttreetrunks,uptoseve- canicactivityonthenorthernperipheryoftheDHVCwere ralmeterslongand1mindiameter,andfragmentsoftree dated using the K-Ar method: Šumná Volcano, Blzeňský branches.Thetrunksaredistributedrandomlyinthehost vrchHillandJelenívrchHill.Despitethesimilarsettingof rock and subhorizontally orientated (Fig. 3). The number thethreevolcanoes,theircompositiondifferssignificantly. of trunks exposed during occasional excavations was not ThelavaoftheŠumnávolcanohasatrachybasalticcompo- highenoughtoevaluatethepossiblepreferredorientation sition,apicrobasalteruptedontheJelenívrchscoriacone, statistically. theČachovickývrchHilliscomposedofanalteredbasa- nite(notsuitableforK-Aranalysis)andalimburgiteforms the Blzeňský vrch lava. The trachybasalt of the Šumná ((cid:9)(cid:25)(cid:26)(cid:24)(cid:20)(cid:21)#(cid:25)(cid:9) !"(cid:3)(cid:25)(cid:20)"#(cid:6)(cid:7)(cid:5)(cid:14)(cid:5)#(cid:21)(cid:5)$#%&(cid:5)(cid:12)’ Volcanowassampledinthecastle-trenchonthetopofthe ŠumnáHill(541ma.s.l.).Theremnantofalavalakeinside Opalizedandcalcifiedwoodfragmentsoccuratthebaseof thescoriaconecraterisexposedthere.Apicrobasaltfeeder fine- to medium-grained scoriae on the banks of the Ne- dykeofascoriaconeremnantcropsoutonthepeakofthe chranice dam on the southern slopes of the Čachovický JelenívrchHill(363ma.s.l.).Basanitelavawassampled vrchHill.Thegeologicalclassificationwasreconstructed intheactivequarrycurrentlyoccupyingtheentireBlzeň- onthebasisofseveralsmalloutcrops.Thelowerpartofthe skývrchHill.Suitablepotassiumconcentrationsproduced sectionisaccessibleonlywhentheNechraniceLakeisem- reasonabledatafortheŠumnáVolcano(20.58±0.66Ma) ptiedduringdryseasons.Thebasementoftheprofilecon- andthelavaofBlzeňskývrchHill(22.51±1.06Ma).The sistsofthefossil-weatheredgneisseoverlainbyapyroclas- K OcontentinthepicrobasaltoftheJelenívrchHilldoes 2 tic deposit. Locally, relics of pre-volcanic sediments – notexceed0.5%.Hence,acceptableresultscouldbeob- sandstonesderivedfromcrystallinerocks,arealsopresent. tainedneitherbyprocessingabulk-rocksamplenorbypro- The non-welded, loose pyroclastic rocks do not create a cessing the plagioclase/glass fraction separated from the realoutcropthereandthethicknesscanonlybeestimated groundmass. as not exceeding 1 m. The pyroclastic deposit consists of The data obtained from Šumná volcano and Blzeňský basaltic scoria fragments, 1–2 cm in diameter. The frag- vrch Hill yield an Aquitanian age and can be correlated mentsoffossilizedwoodscanonlybefoundwherepyroc- with the youngest lava of the Úhošť Hill profile (22.09 ± lasticsoccur.Thefossilizedwoodwascollectedinanarea 0.73 Ma, Rapprich & Holub 2008). 200×20m,onthebanksoftheNechraniceLake.Thepy- roclasticdepositsareoverlainbyafewmetersthickbasani- (cid:25)(cid:5)(cid:4)(cid:23)(cid:21)(cid:4)(cid:4)(cid:5)(cid:3)(cid:9)(cid:7)(cid:3)(cid:9)(cid:7)(cid:17)(cid:8)(cid:11)(cid:18)(cid:3)(cid:9)(cid:3)(cid:14)(cid:20)(cid:7)(cid:8)(cid:9)(cid:16)(cid:7)(cid:4)(cid:17)(cid:13)(cid:8)(cid:17)(cid:5)(cid:10)(cid:13)(cid:8)(cid:11)(cid:18)(cid:20) ticlavaflow,whichextendstothesitefromthetopofČa- chovický vrch Hill. Thispaperfocusesonfossilizedwoodfromfivesitesfrom thenorth-easternmarginsoftheDHVC,representingthree (cid:19)(cid:23)(cid:3)(cid:21)(cid:22))*(cid:3)(cid:23) !"(cid:3)(cid:25)(cid:20)"#(cid:6)(cid:7)(cid:5)(cid:15)(cid:5)#(cid:21)(cid:5)$#%&(cid:5)(cid:12)’ different types of volcaniclastic deposits (Fig. 2). TheareabetweenthetownsofKadaňandKlášterec– CalcifiedtreetrunkswerefoundintheabandonedZvoníč- where the localities Zadní vrch Hill, Prostřední vrch Hill kovvillageamongfragmentsoflacustrinetravertineconta- and Vernéřov are situated (localities 1–3 in Fig. 2) – is ining numerous cavities that originated from herbaceous mainly composed of polymictic volcanogenic debrites. stems. The travertine containing the tree trunks occurs in Thesepolymicticmatrix-supportedvolcanogenicdeposits (cid:26)-. (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:23) withhorizontallyorientatedtreetrunksreflectsedimenta- volcaniclastics.Thesedepositsaretraditionallydescribed tion from debris flow – lahar. The older interpretation by as“tuffs”,butnomodernvolcanologicalstudyhasyetbeen Kopecký (e.g., 2010) considering maar volcanoes is re- focussedonthem,mainlyduetotheabsenceofgoodexpo- jected here because the debrites display no signs of sures. The fine-grained volcaniclastics that underlie the phreatomagmatic fragmentation, xenolith content is low Úhošť lavas can most probably be correlated with the andtheirpresenceislimitedsolelytosomelayersandthe fine-grained volcaniclastics with limestone intercalations debrites comprise subhorizontal beds of thickness up to knownfromthesoutheasternmarginsoftheDHVC(mam- 2m.Ontheotherhand,diatremebrecciaspenetratingcrys- mal zone MP-21: Fejfar & Kaiser 2005, i.e. 34 Ma). The talline units should contain one type of basaltic rock (not fine-grainedvolcaniclasticsatZvoníčkovthereforerepre- various types of basaltic rocks as from the DHVC) and sent products of early DHVC activity in the Early highcontentofupper-crustalxenoliths.Numeroustypesof Ruppelian. volcanic rocks would be present only if diatreme pene- The coarse-grained and strongly vesiculated character tratedthepre-existingvolcanicsequencewhichisnotthe ofthepyroclastsatNechranicereflectsalocallow-energy case in the northern DHVC periphery. magmatic-gas driven volcanic eruption (Strombolian). Thelaharsmusthaveoriginatedfromaterrainwithhigh The wood assemblage at Nechranice is relatively rich. It relative elevation – most likely in the central part of the containsnotonlythetypesdescribedabove,butalsonew DHVC. The volcanic complex very probably reached alti- unidentified angiosperm wood (with at least three new tudesof1000ma.s.l.initscentralpartatthattime(thehigh- types,probablyrelatedtosubtropicalLauraceaeandother est part of the early DHVC edifice is preserved in an ero- families)andonesilicifiedpalmstem(No.121/07),which sionalremnantonthePustýzámekHill,927ma.s.l.inthe aresubjectofongoingstudies.Theplantswereburiedrap- centreoftheDHVC).Thetreesweredraggedbythemass idlybythepyroclasticfallout.Thesubsequentlavaeffu- flowsduringtheirdescentdowntheslopesofthevolcano. sion protected the accumulation from being eroded. The Theprocessmayexplainthehighspeciesdiversityfromthe monogenetic volcanism on the northern periphery can be Zadní vrch Hill. The lower species diversity of the Pro- assignedtotheAquitanianaccordingtothenewdatapre- střednívrchandVernéřovlocalitiesisveryprobablydueto sentedinthispaper.However,wewerenotabletoanalyze the limited extent of occasional exposures. We consider exactly the Běchovický vrch Hill, the surrounding Liriodendron-dominatedforeststobetypicalofhigheralti- monogenic volcanoes yielding data within the range of tudesonthevolcaniccomplexflanksasthiswoodtypehas 20.58±0.66to22.51±1.06Ma.Themonogenicactivity notbeenobservedinthelowlanddepositssurroundingthe onthenorthernmarginoftheDHVCwascontemporane- volcaniccomplex.Liriodendrontodayisastraight,talltree, ouswiththeyoungestlavaoftheÚhošťprofile(Rapprich whichisfortwo-thirdsofthetrunkfreeoflateralbranches & Holub 2008). and famous for its considerable height; nowadays it is the tallestofallEasternUnitedStatesangiospermtrees,andcan (cid:29)(cid:3)(cid:9)(cid:23)(cid:6)(cid:21)(cid:4)(cid:5)(cid:3)(cid:9)(cid:4) attain60minheight(Beck1990).Wefoundapieceatrunk 40cmindiameter(Fig.3)whichwouldroughlycorrespond toanatleast30mtalltree(Beck1990,table1).Theclastic We have distinguished three types of deposits reflecting material of the sediment is derived from the decay of an threedifferentvolcanicenvironments:1)lahardepositson EarlyRuppelianvolcanicedifice.Thelaharsareoverlainby theZadnívrchHill,ProstřednívrchHillandatVernéřov, alavaremnant(Rapprich2007)correlatedwithlavadated 2) pyroclastic deposits of a local monogenic cone at Ne- 28.66±1.06Ma(Rapprich&Holub2008).Hence,wemay chraniceand3)lacustrinesedimentsonaplainatthefoot supposetheageofthelaharsasLateRuppelian. ofthevolcanonearZvoníčkov.TheobtainedK-Aragesfor Thelacustrinelimestone(travertine)atZvoníčkovcon- the monogenic cones on the DHVC northern periphery tainingplatanoidwoodformsintercalationsinfine-grained are the youngest among the volcanic rocks of the entire (cid:2)(cid:5)(cid:10)(cid:21)(cid:13)(cid:12)(cid:7)7+ A,B–Woodtype4–Cercidiphylloxylon(epitypeG8113ofCercidiphylloxylonkadanense).•A–diffuse-porouswoodwithmostlysolitary vessels,angularinoutline.TS.•B–detailofalongscalariformperforationplatewithabout50bars,TLS.•C–Woodtype5–Ulmus(specimen75/04): Outerpartofaring-porouswoodwithmainlysolitaryearlywoodvesselsandlatewoodvesselsinwavytangentialbands,TS.•D–G–Woodtype 6–?Craigia(D–F:specimen72/03;G:specimen89/04).•D–Woodsemi-ringporouswithfoldedearlywoodvessels,TS.•E–stronglyheterocellular rayswithtilecells,TLS.•F–detailoftilecellsofPterospermumtype,RLS.•G–coalescentaperturesofalternateintervesselpitsmimickinghelical thickening,TLS.•H–M–Woodtype7–Coryloxylon(H–J:holotypeCNB-4ofCoryloxylonnemejcii;K–M:holotypeCNB-3ofCoryloxylontertiarum). •H,K–diffuse-porouswoodwithnumerousvesselsinradialmultiples,TS.•I,L–mostly3–4-seriatestronglyheterocellularrays,TLS.•J–two scalariformperforationplateswithlessthan20barsinthemiddle,RLS.•M–scalariformperforationplatewithlessthan20barsfromasideview,TLS. Scale bars = 500μm in A, C, D, H, K; 200μm in E, F, I, L; 100μm in B, G, J, M. (cid:26)-(cid:26)

Description:
Jakub Sakala, Charles University, Faculty of Science, Institute of Geology and .. cheal diffuse-in-aggregates and scanty paratracheal vasi- .. manual/volume_2/silvics_v2.pdf. Electronica 8(1), http://palaeo-electronica.org, 1–11.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.