79 Fortschritte der Chemie organischer Na turstoffe Progress in the Chemistry of Organic Natural Products Founded by L. Zechmeister Edited by W. Herz, H. Falk, G. W. Kirby, and R. E. Moore Authors: J. C. Braekman, D. Daloze, H. Franzyk, J. M. Pasteels, and S. Leclercq Springer-V erlag Wien GmbH Prof. W. HERZ, Department of Chemistry, The Florida State Vniversity, Tallahassee, Florida, V.S.A. Prof. H. FALK, Institut fiir Chemie, Johannes-Kepler-Vniversităt, Linz, Austria Prof. G. W. KIRBY, Chemistry Department, The Vniversity of Glasgow, Glasgow, Scotland Prof. R. E. MOORE, Department of Chemistry, Vniversity of Hawaii at Manoa, Honolulu, Hawaii, V.S.A. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concemed, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. © 2000 by Springer-Verlag Wien Origina1ly published by Springer-Verlag I Wien in 2000 Softcover reprint ofthe hardcover lst edition 2000 Library of Congress Catalog Card Number AC 39-1015 Typesetting: Thomson Press (India) Ltd., New Delhi Graphic design: Ecke Bonk Printed on acid-free and chlorine-free bleached paper SPIN: 10743105 With 11 Figures ISSN 0071-7886 ISBN 978-3-7091-7235-3 ISBN978-3-7091-6341-2(eBook) DOI 10.1007/978-3-7091-6341-2 Contents ListofContributors ... ........................................ VII Synthetic AspectsofIridoid Chemistry ByH.FRANZYK . •.• •. •. •. • . • . .. . . .• .. . . . . . . . •. •. • . •. •. •• ••• •• I. Introduction............................................... 2 2. Classification of Iridoids...................................... 2 2.1. IridoidGlycosides....................................... 3 2.2. Non-GlycosidicIridoids................................... 6 2.3. Nitrogen-ContainingCompounds............................. 7 3. AvailabilityandProductionof Iridoids ............................ 8 3.1. Plant Sources .......................................... 9 3.2. Cel1-Cultures........................................... 10 3.3. Isolationand PurificationMethods............................ II 4. Semi-Synthetic ConversionsBetween Iridoids....................... 13 4.1. Hydrolysisand Lactonization ............................... 14 4.2. Decarboxylationof IridoidGlucosides......................... 15 4.3. ReductionandOxidation ofIridoidGlucosides................... 17 4.4. Miscel1aneousTransformationsUsed inStructure Elucidation......... 22 4.5. Non-GlucosidicIridoids................................... 25 4.6. Ring-CleavageSequences andSccoiridoid Chemistry .............. 36 5. MonoterpeneAlkaloidsStructural1yRelatedto Iridoids ................ 45 5.1. PMTAs- Natural Compoundsor Artifacts? ..................... 45 5.2. Semi-Synthesisof PyridineMonoterpene Alkaloids................ 48 5.3. Bacterial Metabolismof IridoidGlucosides ..................... 52 5.4. TotalSynthesisof PyridineMonoterpeneAlkaloids................ 55 5.5. DiversityofBicyclicCyclopentanoidPiperidines ................. 59 5.6. Synthesisof BicyclicCyclopentanoid Piperidines ................. 59 5.7. Semi-Synthesisof Glucosidic Secoiridoid Alkaloids ............... 67 6. SynthesesfromIridoids....................................... 69 6.1. FormationofColoredCompounds............................ 69 6.2. ReactionsofSecoiridoids.................................. 73 6.3. Preparation of Marine Diterpenoids........................... 82 6.4. Building BlocksforOtherTypesofCyclopentanoids............... 87 6.5. ModificationsoftheSugarMoiety inIridoidGlucosides ............ 103 References.................................................. 106 VI Contents The Defensive ChemistryofAnts ByS.LECLERCQ,J.C.BRAEKMAN, D.DALOZE,andJ.M.PASTEELS 115 I. Introduction 116 2. Alkaloids ... ............................................. 118 2.1. Structures,Occurrence,and Function 118 2.1.1. Piperidinesand Pyridines ............................. 118 2.1.2. Pyrrolidinesand Pyrrolines 120 2.1.3. Pyrrolizidines ..................................... 122 2.1.4. Indolizidines 124 2.1.5. Tetraponerines 126 2.1.6. Other Alkaloids 127 2.2. Synthesis ............................................. 128 2.2.1. Piperidines ....................................... 128 2.2.2. Pyrrolidines 131 A. SynthesisofRacemicPyrrolidines .................... 131 B. Synthesesof NonracemicPyrrolidines .. 139 2.2.3. Pyrrolines 149 2.2.4. Pyrrolizidines ..................................... 152 2.2.4.1. 3,5-Dialkylpyrrolizidines ................. 152 A. Xenovenine 152 B. (5E,8E)-3-Butyl-5-hexylpyrrolizidine ............ 159 2.2.4.2. 3-Methyl-5-alkenylpyrrolizidinesand 3,5-Dialkenylpyrrolizidines 160 2.2.5. Indolizidines 163 2.2.5.1. Monomorine I 163 A. SynthesesofRacemic Monomorine I ............ 163 B. Synthesesof Nonracemic Monomorine I 173 2.2.5.2. 3,5-Dialkylindolizidines ........................ 190 A. 3-Butyl-5(4-penten-l-yl)indolizidine 190 B. 3-Ethyl- and 3-Hexyl-5-methylindolizidines 193 C. Myrrnicarin 237A and 237B .................. 194 D. Myrrnicarin 217 198 2.2.6. Tetraponerines 200 A. SynthesesofRacemic Tetraponerines .................. 200 B. Synthesesof NonracemicTetraponerines 205 3. Nonalkaloidal Compounds 211 4. Biosynthesis .. ............................................ 217 References 221 Author Index ............................................... 231 Subject Index , 239 List of Contributors Jean-Claude Braekman, Laboratory of Bio-Organic Chemistry, Department of Organic Chemistry,CP160/07,UniversityofBrussels,Av.F.D.Roosevelt,50,B-1050Brussels, Belgium Desire Daloze,Laboratory ofBio-OrganicChemistry,Departmentof Organic Chemistry, CP 160/07,UniversityofBrussels, Av.F.D.Roosevelt,50,B-1050 Brussels, Belgium HenrikFranzyk,DepartmentofOrganicChemistry,TheTechnicalUniversityofDenmark, Building 201, DK-2800Lyngby, Denmark SabineLeclercq,LaboratoryofBio-OrganicChemistry,DepartmentofOrganicChemistry, CP 160/07,Universityof Brussels, Av.F.D.·Roosevelt,50,B-1050 Brussels, Belgium Jacques M.Pasteels, Laboratoryof Animal and CellularBiology,CP 160112,University of Brussels, Av.F.D.Roosevelt, 50,B-1050 Brussels, Belgium Synthetic Aspects of Iridoid Chemistry H. Franzyk Department ofOrganic Chemistry,TheTechnical University of Denmark, Lyngby, Denmark Contents I. Introduction................................................ 2 2. Classification of Iridoids ....................................... 2 2.1. lridoid Glycosides ........................................ 3 2.2. Non-Glycosidic Iridoids.................................... 6 2.3. Nitrogen-Containing Compounds.............................. 7 3. Availability and Production of Iridoids ............................. 8 3.1. PlantSources ........................................... 9 3.2. Cell-Cultures............................................ 10 3.3. Isolation and Purification Methods............................. II 4. Semi-Synthetic Conversions Between Iridoids ........................ 13 4.1. Hydrolysis and Lactonization ................................ 14 4.2. Decarboxylation ofIridoid Glucosides.......................... 15 4.3. Reduction and Oxidation of Iridoid Glucosides.................. .. 17 4.4. Miscellaneous Transformations Usedin Structure Elucidation.......... 22 4.5. Non-Glucosidic Iridoids.................................... 25 4.6. Ring-Cleavage Sequences and Secoiridoid Chemistry ............... 36 5. Monoterpene Alkaloids Structurally Related to Iridoids.................. 45 5.1. PMTAs- Natural Compounds or Artifacts? ...................... 45 5.2. Semi-Synthesis of Pyridine Monoterpene Alkaloids................. 48 5.3. Bacterial Metabolism of Iridoid Glucosides ...................... 52 5.4. TotalSynthesis of Pyridine Monoterpene Alkaloids................. 55 5.5. Diversityof Bicyclic Cyclopentanoid Piperidines ... ............... 59 5.6. Synthesis of BicyclicCyclopentanoid Piperidines .................. 59 5.7. Semi-Synthesis of Glucosidic Secoiridoid Alkaloids ................ 67 6. Synthesesfrom Iridoids........................................ 69 6.1. Formation ofColored Compounds............................. 69 6.2. Reactions ofSecoiridoids ................................... 73 6.3. Preparation of Marine Diterpenoids............................ 82 J. C. Braekman et al. Progress in the Chemistry of Organic Natural Products © Springer-Verlag/Wien 2000 2 H.Franzyk 6.4. BuildingBlocksforOtherTypesof Cyclopentanoids................ 87 6.5. Modificationsofthe Sugar Moiety inIridoid Glucosides ............ 103 References.................................................. 106 1. Introduction The aim of the present review is to cover developments in the chemistry of iridoids and related compounds during the last decade. In order to be able to give a broad, but still comprehensive presentation of this vast area some limitations to the subject were necessary. Accordingly, the chemotaxonomic importance and biosynthesis studies of iridoids will be omitted from the present survey since these subjects have been treated in contemporary reviews (1-4). Similarly, biological activity (5) and ecological aspects of iridoids (6, 7) will not be treatedin detail here. A more historical introduction to the chemistry of iridoids has already been given (8), and in addition a specialized report on the progressof synthetic iridoid chemistryhas appeared(9).Here, itisrather intendedtoprovidethe readerwith an overview of the types ofchemical reactions that have recently been applied to iridoids and to present a collectionof synthetic possibilities which should give some perspectives for future work in this field. First a brief introduction to typical structural features of iridoids is presented. It should be emphasized that the subdivision employedhere is strictly structural (10,11) - somewhat different subclasses would be the result if biosynthetic relationships were applied (1,2).Both direct isola tion from plants and production by cell-cultures can be used for obtaining iridoids, which in tum may be regarded either as starting material for synthesis of other compounds or as synthetic targets themselves. Regarding the latter possibility, only conversions between different iridoids will be discussed in depth in the present review. However, iridoid related monoterpene alkaloids have been included in the present survey and will receive considerable attention, as will the synthetic utility of iridoid-derived building blocks. 2. Classification of Iridoids The group of monoterpenoid compounds recognized as iridoids comprises at present well above 1200 structures which exhibit a remarkable diversity that will be outlined briefly. First a fundamental References,pp. 106-1/4 Synthetic AspectsofIridoid Chemistry 3 distinction between iridoid glycosides and non-glycosidic iridoid compounds will be made. Throughout the present review trivial names (typically having suffixessuch as-inor-oside) will beused since theIUPACnomenclature often istoo complex and lengthy even for very simple structures, e.g.the general carbocyclic skeleton (R= Glc in Chart 1)would be named (5) 1-~-D-glucopyranosyl-4,7-dimethyl-l,4a,5,6,7,7a-hexahydro-cyclopenta [c]pyran. In many cases the iridoid numbering shown (Chart 1) will be retained, even when another numbering may be equally appropriate, to facilitate recognition of the iridoid skeleton in strongly modified congeners. 2.1. Iridoid Glycosides The iridoid glycosides themselves may be further subdivided into carbocyclic iridoids and secoiridoids, and their common feature is the dihydropyran ring system. In general a ~-D-glucopyranosyl unit is attached at C-l viaa ~-hemiacetalic bond (Chart 1).The non-glycosidic part of an iridoid glycoside is often referred to as the aglycone or the "genin". Carbocyclic Secoiridoid Chart 1. Basic skeletonsofiridoid glycosides Most carbocyclic iridoids have a cis-fused cyclopentane ring with substituents at C-5 and C-9 in ~-positions (i.e. out of the plane of the paper), but recently a few trans-fused compounds have been reported (12). Avaststructuraldiversity ofcarbocyclic iridoids arises from simple modifications of the cyclopentane ring exemplified by some typical functionalities: hydroxy, acyloxy, keto, epoxy, chloro, and olefin. In addition theoxidation stateofC-ll mayrange from methyl tocarboxylic acid (andesters thereof). But also the basic skeleton exhibits variation as a result of decarboxylation, thus C-IO and/or C-II may be absent. The secoiridoids have a basic skeleton in which the carbon-carbon bond between C-7 and C-8 has been cleaved, but secoiridoids always contain all original ten aglycone carbon atoms. In secoridoids the oxidation state of C-7 and C-8/C-9/C-l0 may vary, while C-II is at the 4 H.Franzyk Cs-Iridoids: tv C,"W HO OH OGle HO OGle Unedoside(1) Thunbergioside(2) Cg-Iridoidswithninthcarbon ontCQ-4: 0H Me 9$"' HHOO "OH~ HO OGle OGle o OGle Seabrosidol(3) Epoxydeealoside(4) Randioside(5) Cg-Iridoidswithninthcarbon onC-8: tv HM 2.=Q r-: HO OGle HO/ OGle - OGle Aueubin(6) Catalpol(7) Antirrhinoside(8) HOW"' ¢IS ~~H OGle - OGle OGle Loganin(9) Plantarenaloside(10) Gardoside(11) Bisiridoids: ~ty HO - OGle HO/' OGle Radiatoside(12) Chart 2. Carbocyclic iridoid glycosides (l0,11,13) References,pp. 106-1/4
Description: