FORMULAE AND TABLES FOR ACTUARIAL .EXAM I NATIONS (INSTITUTE OF ACTUARIES) THE INSTITUTE OF ACTUARIES AND THE FACULTY OF ACTUARIES 1980 First published 19x0 , ' Reprinted 1983 Reprinted 19XX Rcpriiited 1990 * I R eprinted 199 I Pi-inled in Grar Drit,iin :it the 4lden Press. Oul'ord FORMULAE AND TABLES FOR ACTUARIAL EXAMINATIONS (INSTITUTE OF. ACTUARIES) INSTITUTE OF ACTUARIES Formulae for the use of Candidates at the Examinations SEE ALSO HEADINGTSO 1NDIVIDUAL rABLES The list given below is intended to help candidates with formulae which may be found hard to memorize. Inclusion in the list does not mean that a proof may not be required. 1 1. FINITE DIFFERENCES Newton’s formula: ux+,,,, = u~+ri~l)Au,+n(z)A2u,+. . . Newton’s divided-difference formula : U, = u,+(x-cI) Au.+(X-(I)(X-b) A%,+. . . b br Lagrange’s interpolation formula : - U, (x-a)(x-b). . .(x-k)- U, 1 + ub 1 + ... (a-b)(a-c). . .(a-k)’x-a (6-a)(b-c). . .(b-k)’x-b Gauss’s forward formula: + U, = UO +x~~)Au~+x(~,A1 +~(ux+- 1)(3)A3u- 1 +(x+ l),,) . . . Gauss’s backward formula : U, = UO +x(l)A U- 1 +(x + I)(,) AZu- 1 . . + ( X + ~ ) ( ~ ) A ~ U ~ ~ + ( X + ~ ) ( ~ , A ~ ~ - ~ + . Summation by parts: 1I ( U, Au,) = [ux 0,]1’ -Ea (U,+ Au,) 1 1 (l+A)’ E &= _du, -- A uX-- A%, +-A-% , ..* dx 2 3 Negative There are two formulations, one typically for Subject I Binomial and one typically for Subject 5. For subject 1 : Parameters: k, a positive integer; 0 < p < 1 with q = 1- p (iI : ) ‘, + + PF. P(X = X) = pkqx- x = k, k 1, k 2, . . . L k kq E(X) = -, Var(X) = - P P2 For subject 5: Parameters: k > 0; 0 < p < 1 with q = 1 -p (“ PF. P(X = x) = +;-l)Pv. x = 0, I, 2, ”,,)” PGF. G(s) = - (I k9 kq E(X) = -, Var(X) = - P P2 The two formulations are of course connected, each differing from the other by a shift in location. In particular, if X, is as in the subject 1 formulation and X, as in the subject 5 formulation with an integer value fork, + then X, = X, k. Geometric Negative Binomial with k = 1 2.4. CONTINUOUS DISTRIBUTIONS Normal Parameters: - cc < p < 00, 0 > 0 ( a + MGF. M(t) = exp pf - a2t2 E(X)= p, Varw) = n2 1 Gamma . Parameters: c! > 0, A > 0 . * - AaXa I PDF.f(x) = -e pAx,x > O r(a) ( ;)-’ MGF.M(t)= I-- ,t<E. Exponential Parameter: 1 > 0 PDF. f(x) = Ae-A“, x > 0 E(X) = 1 /i.V,a r(X) = I/;? n 1 Chi-square 12 is Gamma with a = -2 and I = -2. where n is a positive integer Beta Parameters: a > 0, j > 0 MGF. a E(X) = -c! + p’ V ar(X) = (a+ B>’(a + P + 1) Lognormal Parameters: - CO < p < CO, CJ > 0 -i(%)2} exp{ PDF.f(x) = ,x>o XCJ& MGF. - 3 E(X)= e.xp {p + -0' , Var(X) = exp(2p + a'}. [exp{a2)- I] L Pareto Parameters: 2 > 0, ,I > 0 + PDF. f@) A ai"(l x)-~-',x > 0 MGF. - E(X)= L/(a- I), Var(X) = a,12/{(a- I)'(a-2)} Generalised Parameters: tl > 0, E . > 0, k > 0 Pareto + T(cr k)l"xk PDF.f(x) = + - I x > o r(a)r(k)(i x ) ~ + ~ ' MGF - + E[X]= ik/(a- I), Var[X] = i2k(k a- I)/{(a- I)'(cr-2)} Weibull Parameters: c > 0, y > 0 PDF.f(x) = cyx'-lexp{ -cxy}, x > 0 MGF. - Burr Parameters: a > 0, ,I > 0, y > 0 + PDF. f(~=) a yi"xS-'(EL xY)-. I, x > 0 MGF. - 2.5. COMPOUND- D ISTRIBUTIONS Compound N Poisson (A), {X,}zI i i d. Poisson N Y = X,(=OifN=O) I= 1 MGF. of Y. M,,(t) = exp{l(M,(r)- 1)) where M,(t) is the MGF of X, L 2.6. PARAMETRIC INFERENCE, NORMAL MODEL The random sample (x,, x2, . ?2 , k,) has mean R and variance cx2 - (Cx)2/n 32 = n- 1 (a) Fo-r a single sample of size n under the normal model X N(P, a*) - (n- 1)S2 (ii) x,- 1 U2 (b) For two in-d ependent sam-pl es of sizes rn and n under the normal models X N(px ,,): a Y N(p ,,,a’,> respectively (ii) under the additional assumption :a = a’,
Description: