Formation of supermassive black holes Mélanie Habouzit To cite this version: Mélanie Habouzit. Formation of supermassive black holes. Astrophysics [astro-ph]. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT: 2016PA066360. tel-01480290 HAL Id: tel-01480290 https://theses.hal.science/tel-01480290 Submitted on 1 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Astrophysique École Doctorale d’Astronomie & d’Astrophysique d’Ile-de-France réalisée à l’Institut d’Astrophysique de Paris présentée par Mélanie Habouzit pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Formation of supermassive black holes soutenue le 15 septembre 2016 devant le jury composé de : Benoit Semelin Président du jury Marta Volonteri Directeur de thèse Rachel Somerville Rapporteur Sadegh Khochfar Rapporteur Raffaella Schneider Examinateur Jenny Greene Examinateur Yohan Dubois Examinateur A mon petit Fanfan, mes parents et mes grand-parents. Abstract Supermassive black holes (BHs) harboured in the center of galaxies have been confirmed with the discovery of Sagittarius A? in the center of our galaxy, the Milky Way. Recent surveys indicate that BHs of millions of solar masses are common in most local galaxies, but also that some local galaxies could be lacking BHs (e.g. NGC 205, M33), or at least hosting low-mass BHs of few thousands solar masses. Conversely, massive BHs under their most luminous form are called quasars, and their luminosity can be up to hundred times the luminosity of an entire galaxy. We observe these quasars in the very early Universe, less than a billion years after the Big Bang, with masses as large as 108M (Fan et al., 2006b; Mortlock et al., 2011). BH formation (cid:12) models therefore need to explain both the low-mass BHs that are observed in low-mass galaxies today, but also the prodigious quasars we see in the early Universe. Several correlations between BH mass and galaxy properties have been derived empirically, such as the BH mass-velocity dispersion relation, they may be seen as evidence of BH and galaxy co-evolution through cosmic time. Moreover, BHs impact their host galaxies and vice versa. For example, BH growth is regulated by the ability of galaxies to funnel gas towards them, while BHs are thought to exert powerful feedback on their host galaxies. BHs are a key element of galaxy evolution, and therefore in order to study BH formation in the context of galaxy evolution, we have used cosmological hydrodynamical simulations. Cosmological simulations offer the advantage of following in time the evolution of galaxies, and the processes related to them, such as star formation, metal enrichment, feedback of supernovae and BHs. BH formation is still puzzling today, and many questions need to be addressed: How are BHs created in the early Universe? What is their initial mass? How many BHs grow efficiently? What is the occurrence of BH formation in high redshift galaxies? What is the minimum galaxy mass to host a BH? Most of these questions are summarized in Fig 1, which represents a sample of local galaxies with their BHs, in blue points. The red shaded area represent the challenge of this thesis, which is to understand the assembly of BHs at high redshift and their properties. My PhD focuses on three main BH formation models. Massive first stars (PopIII stars) in mini-halos, at redshift z = 20−30 are predicted to collapse and form a BH retaining half the mass of the star, (cid:46) 102M (Madau & Rees, 2001; Volonteri, Haardt & Madau, 2003). This is the Pop III (cid:12) star remnants model. Compact stellar clusters are also thought to be able to collapse and form a very massive star by stellar collisions, which can lead to the formation of a ∼ 103M BH seed (cid:12) (Omukai, Schneider & Haiman, 2008; Devecchi & Volonteri, 2009; Regan & Haehnelt, 2009b). Finally, in the direct collapse model, metal-free halos, without efficient coolants (i.e. no metals, no molecular hydrogen), at z = 10 and later, can collapse and form a star-like supermassive object, which can collapse into a BH of 104 −106M (Bromm & Loeb, 2003; Spaans & Silk, (cid:12) 2006; Dijkstra et al., 2008). As we will see in this thesis, we have investigated both the BH population in normal local galaxies, as well as the feasibility of BH formation model to explain the assembly of the high redshift quasar population. First of all, in order to fully understand the population of BHs we i ii Fig. 1 – Sample of BHs in local galaxies in light and dark blue points. BH masses range from few 104M (cid:12) to 1010M . The shaded area represent the domain of BH mass at their formation time, in the early (cid:12) Universe. observe in low-mass galaxies, we need a theoretical model able to predict the occupation fraction of BHs in low-mass galaxies, and the properties of both these BHs and their host galaxies. We have implemented a model accounting for the PopIII remnant and stellar cluster models, in the numerical code Ramses. We form BHs according to the theoretical models, and let these BHs evolve with time. So far, cosmological simulations were only used to reproduce the quasars luminosity function and study their feedback, simulations were therefore seeding BHs by placing a 105M BH in the center of massive galaxies. Our approach allows instead to study BH formation, (cid:12) and to cover the low-mass end of BHs. We then compare the simulated BHs to two different observational samples, local galaxies (Reines & Volonteri, 2015), and Lyman-Break Analogs (Jia et al., 2011a). Local low-mass galaxies are among the most pristine galaxies, because they have a quieter merger history. Therefore BHs in low-mass galaxies, are also thought to be pristine, and to not have evolved much from their birth, thus they can provide us precious clues on BH formation. Lyman-Break Analogs are galaxies very similar to their high redshift analogs, the Lyman-Break Galaxies, comparing our simulated samples to BHs found in these galaxies can therefore also provide us a promising new laboratory to study BHs in high redshift environment, but much closer to us. The direct collapse model has been much studied recently, but there is no consensus on the number of BHs that form through this model yet. The number density of BHs, derived by different studies employing semi-analytic models (Dijkstra, Ferrara & Mesinger, 2014) or hybrid semi-analytic models (Agarwal et al., 2012, 2014) varies on several orders of magnitude. Hybrid semi-analytic models are very appealing because they use spatial information from cosmological simulations. However, only small simulated volumes allow one to achieve the high resolutions needed to resolve minihalos, and the early metal enrichment. These small boxes probe with difficulty the feasibility of the direct collapse BH formation model, lacking statistical validation. Instead, in this thesis, we chose to run simulations with different box sizes and resolutions, that allow us to test the impact of different processes such as metal enrichment and the impact of supernova feedback. The main advantage is also that employing large simulation boxes makes Abstract iii possible to test different radiation intensity thresholds to destroy molecular hydrogen, which is of paramount importance for the direct collapse model. iv Abstract Remerciements Nous n’avons pas souvent l’occasion de remercier les personnes qui nous épaulent au quotidien, que ce soit professionnellement ou personnellement, ou bien même les deux. Sans elles, rien n’aurait été possible. MespremiersremerciementssontpourMarta,quim’afaitpartagersonenthousiasmeetsasoif de connaissance, merci pour sa patience et sa pédagogie, et pour m’avoir donné l’opportunité de travailler sur des projets passionnants. Nous avons cherché ensemble à répondre à quelques-unes des questions sur la formation et la croissance des trous noirs supermassifs, mais il en reste encore des milliers, et j’espère tout autant d’occasions de travailler de nouveau ensemble. Deux autres chercheurs m’ont particulièrement apporté leur aide durant ma thèse. Je remercie Yohan Dubois pour sa disponibilité, pour m’avoir fait découvrir Ramses, et pour avoir répondu aux questions de physique, aussi bien qu’aux questions numériques que je me suis posée pendant ces trois années. Je remercie également Muhummad Latif pour m’avoir accompagnée sur les chemins sinueux du modèle direct collapse de formation des trous noirs, ainsi que pour sa disponibilité et ses conseils. J’ai également une pensée pour les chercheurs avec qui j’ai débuté et qui m’ont toujours en- couragée et apporté leur soutien, Claudia Maraston à Portsmouth (ICG), et bien sûr ici à Paris (IAP), Gary Mamon, Joseph Silk, et Sébastien Peirani. Je tiens également à remercier Jacques le Bourlot pour son soutien et tous les conseils judicieux qu’il a pu me donner. Bien sûr ma thèse n’aurait pas été la même sans notre grande équipe, je remercie donc également Pedro Capelo, Andrea Negri, Salvatore Cielo et Alessandro Lupi pour le côté italien, Tilman Hartwig pour le côté allemand, et Rebekka Bieri pour le côté suisse de notre équipe. Merci à Rachel Somerville et Sadegh Khochfar d’avoir accepté d’être les rapporteurs de ma thèse et d’avoir passé une partie de leurs vacances d’été à lire mon manuscrit, à Raffaella Schneider et Jenny Greene d’avoir accepté d’être examinatrices, et finalement Benoit Semelin d’avoir accepté de présider le jury de ma thèse. Ce sont des chercheurs exceptionnels et je suis vraiment fière qu’ils aient accepté de faire partie de mon jury de thèse, merci pour leur suggestions et remarques très constructives sur mon travail. Pendant trois ans, j’ai eu la chance de travailler également au Palais de la Découverte, de donner des conférences le week-end, et d’écrire des articles pour la revue Découverte du musée. Je remercie Sébastien Fontaine de m’avoir donné cette chance. J’ai pu discuter avec le grand public des nombreuses grandes questions de l’astrophysique, m’émerveiller avec eux de toutes les réponses que nous avons déjà, rire avec toutes ces personnes de 7 à 77 ans qui viennent découvrir et apprendre au musée des sciences de Paris. Je ne peux ici pas citer toutes les personnes que je voudrais remercier, mais j’ai une pensée particulière pour Marc Goutaudier, Andy Richard, et Gaëlle Courty qui m’ont apporté une aide précieuse. v
Description: