LETTER Formation of new stellar populations from gas accreted by massive young star clusters ChengyuanLi1,2,3,RicharddeGrijs1,4,LicaiDeng2,AaronM.Geller5,6,YuXin2,YiHu2andClaude-Andre´ Faucher-Gigue´re5 6 1 1KavliInstituteforAstronomy&Astrophysics,PekingUniversity,YiHeYuan bulkstellarpopulation(inparticularintermsoftheheliumandheavier- 0 Lu5,HaiDianDistrict,Beijing100871,China elementabundances),giventheabsenceofanycleardifferencesinthe 2 2KeyLaboratoryforOpticalAstronomy,NationalAstronomicalObservatories, observedridge-linecolours. SequenceAmayalsoincludeasubpopu- ChineseAcademyofSciences,20ADatunRoad,ChaoyangDistrict,Beijing lationofstarsassociatedwiththeclustersredclump,the0.7to2solar- n a 100012,China mass analogues of the helium-burning horizontal-branch stars (indi- J 3PurpleMountainObservatory,ChinesAcademyofSciences,2WestBeijing catedbytheorangearea). Figure1bshowsthecolour-magnitudedia- 7 Road,Nanjing,210008,China grampertainingtoNGC1696. Italsoexhibitsabright,youngsimple- 2 4InternationalSpaceScienceInstitute-Beijing,1Nanertiao,HaiDianDistrict, stellar-population sequence characterized by log(t yr−1) = 8.70 (500 Beijing100190,China millionyears),whereasthebulkoftheNGC1696starsarebestrepre- ] 5Center for Interdisciplinary Exploration and Research in Astrophysics sentedbyanolderageoflog(tyr−1)=9.18(1.5billionyears). Com- A (CIERA) and Department of Physics and Astronomy, Northwestern Univer- paredwiththeclustersdominantmainsequence,theyoungersequence G sity,2145SheridanRoad,Evanston,IL60208,USA exhibits a colour offset of approximately -0.06 mag (a shift to bluer . 6DepartmentofAstronomyandAstrophysics,UniversityofChicago,5640S. colours),whichisconsistentwithastellarpopulationcharacterizedby h EllisAvenue,Chicago,IL60637,USA anenhancedheliumabundanceofY =0.330(33.0%ofheliumatoms p bymass),whileY =0.256forthebulkoftheclusterstars. Asimilar - o Stars in star clusters are thought to form in a single burst from resultforNGC411isshowninFigure1c,wherewealsofindanaddi- r acommonprogenitorcloudofmoleculargas. However, massive, tional,brighterstellarsequencethatiswell-representedbyayounger st oldglobularclusters–withagesgreaterthan10billionyearsand isochroneoflog(tyr-1)=8.50(320millionyears)andY =0.400,com- a massesofseveralhundredthousandsolarmasses–oftenharbour paredwithlog(tyr−1)=9.14(1.4billionyears)andY =0.252forthe [ multiplestellarpopulations1–4,indicatingthatmorethanonestar- bulkoftheclustersstellarpopulation. Thesewell-populated,younger forming event occurred during their lifetimes. Colliding stellar andhelium-enhancedstellarsequencesrepresentthestrongestevidence 1 v winds from late-stage, asymptotic-giant-branch stars5–8 are often yetthatadditional,post-formationstarbursteventsmayhaveoccurred 6 invoked as second-generation star-formation trigger. The initial inoursampleclusters.Theenhancedheliumabundancesmayalsolead 9 clustermassesshouldbeatleast10timesmoremassivethanthey tosmallchangesinthebest-fittingclusterages,buttherearecurrently 2 aretodayforthistowork8. However,largepopulationsofclusters noappropriatemodelisochronesavailabletoaccuratelyexplorethisef- 7 withmassesgreaterthanafewmillionsolarmassesarenotfound fectforstellarpopulationsyoungerthan1billionyears. Nevertheless, 0 inthelocalUniverse. Herewereportonthree1-2billion-year-old, thegeneralsenseofhelium-enhancedyoungsequencesshownhereis 1. massivestarclustersintheMagellanicClouds, whichshowclear robust. Todate,noothermassiveclustersofequivalentageareknown 0 evidenceofburst-likestarformationthatoccurredafewhundred tohostsimilarlysignificantpopulationsofyoungerstars10. 6 millionyearsaftertheirinitialformationera. Weshowthatsuch 1 clusterscouldaccretesufficientgasreservoirstoformnewstarsif Weexploredwhether‘bluestragglerstars’–starsthathavebeen : the clusters orbited in their host galaxies gaseous discs through- rejuvenatedthrougheitherstellarcollisionsormasstransferinbinary v outtheperiodbetweentheirinitialformationandthemorerecent stellarsystems11,12 –couldbeentirelyresponsibleforthepresenceof i X burstsofstarformation.Thismayeventuallygiverisetotheubiq- theseyoungersequences. Iftheyareformedthroughmasstransferin r uitousmultiplestellarpopulationsinglobularclusters. unresolved, compact binary systems, they would appear brighter and a slightlyredderthanthecorrespondingisochrone13describingzero-age The colour-magnitude diagrams of NGC 1783, NGC 1696 and single stars (stars whose output luminosities are no longer powered NGC411areshowninFigure1.Thesestellardistributions–theobser- bytheexcessenergygainedfromgravitationalcontractionbutwhich vationalcounterpartsofthetheoreticalHertzsprung-Russelldiagrams, are instead driven by nuclear fusion of hydrogen atoms). However, which relate the stellar surface temperatures to their luminosities – the younger sequences in both clusters are too blue to account for a havebeenfield-stardecontaminatedbycarefulapplicationofstatisti- binary origin and can instead be very well described by single-star calbackground-subtractiontechniques(seeMethods).Figure1ashows isochrones.Giventheiryoungagesandthetimescalesinvolvedinevo- thatthemajorityofstarsassociatedwithNGC1783arewell-described lutionthroughbinarymasstransfer, ifanyoftheseyoungerstarsare by an isochrone9 – a theoretical ridge-line that describes stars with indeedbluestragglers,theywillmostlikelyhaveformedthroughstel- identicalagesbutcoveringarangeofinitialmasses–characterizedby larcollisions.Collisionallyformedbluestragglers,likesecondarystel- anageoflog(tyr−1)=9.15(1.4billionyears;seeMethods).However, largenerationsoriginatingfromcollidingstellarwinds,areexpectedto one can also clearly discern two additional, bright stellar sequences, bemorecentrallyconcentratedthantheclustersdominant(bynumber) denoted A and B, with younger ages of, respectively, log(t yr−1) = stellar populations6. Figure 2 compares the normalized radial distri- 8.65 (450 million years) and log(t yr−1) = 8.95 (890 million years). butions of the young sequences with those of normal cluster stars of Thelatterappeartohavesimilarchemicalcompositionsastheclusters similarluminosity.Thestarsintheyoungsequencesaremarkedlyless 1 A 18 ) g B a m (20 B a 22 −0.1 0 0.1 0 0.5 1 1.5 2 2.5 ∆ (B– I ) (mag) B–I (mag) 18 18 ) ) g g a a m m (20 (20 B B b c 22 22 0 0.5 1 1.5 2 0 0.5 1 1.5 B–I (mag) B–I (mag) Figure1|Colour–magnitudediagrams,includingthebest-fittingisochrones,andtrue-colourimagesforallthreeclusters.a:NGC1783.Purpleanddarkgreen squares:sequence-Aand-Bstars,respectively;redsolid,bluesolidandbluedashedlines:isochronesforlog(tyr−1)=9.15,8.95and8.65,respectively.Theorange boxindicatestheregionwherered-clumpstarsassociatedwithsequenceAmaybefound. Representative1σmeasurementuncertaintiesareshownintheleft-hand subpanel;notethatitsx-axisscaleisdifferentfromthatofthemainpanel.b:NGC1696.Purplesquares:youngersequence;redsolidandbluedashedlines:isochrones forlog(tyr−1)=9.18and8.70,respectively. c:NGC411. Purplesquares:youngersequence;redsolidandbluedashedlines:isochronesforlog(tyr−1)=9.14 and8.50,respectively. Themeasurementuncertaintiesinpanelsbandcareequivalenttothoseshownforpanela. FortheyoungsequencesinNGC1696andNGC 411,enhancedheliumabundanceshavebeenadopted(seetext). centrally concentrated than the dominant older population of cluster ofmillionsofyears20,21owingtotheoccurrenceofTypeIIsupernovae members. resultingfromthedeathsofthemostmassivefirst-generationstars22,23. Themoreextendednatureoftheyoungpopulationssuggeststhat Thisleavesaclusterembeddedinagas-poor‘cavity’. Astheyoung theymayhaveanexternalorigin. Indeed,sincethetypicalmassesof starclustermovesthroughtheinterstellarmedium,itcouldpotentially NGC1783,NGC1696andNGC411areonly1.8×105,5.0×104and accrete sufficient gas to fuel renewed star formation. In theory, sec- 3.2×104solarmasses14,15,respectively,theyareinsufficientlymassive ondary star formation can be triggered23–25 and proceed rapidly once to efficiently capture the stellar winds from asymptotic-giant-branch thegasdensityreachestherelevantthreshold,forsufficientlylowtem- stars16. Note that our NGC 1696 mass is based on extrapolation of peratures. This would result in the appearance of a younger ‘simple theobservedstellarluminosityfunctiondowntoastellarmassof0.08 stellarpopulation’. However,todatetherealityofthisproposedidea solarmasses(theminimummassforhydrogenfusion, somewhatde- hasnotbeenconfirmed. pending on the stars chemical composition), adopting a Kroupa-like Althoughtheyareallcontainedwithintwicetheirhostclusterscore initialmassdistribution17.Inaddition,theobservedupperlimitsinthe radii, theobservedspatialdistributionsofallyoungstellarsequences mass-agediagramspopulatedbystarclustersintheMagellanicClouds inoursampleclustersaremoreextendedthanthoseoftheirbulkstellar arewell-understoodintermsof‘size-of-sample’effects. Theycannot populations. Thiscouldindicatethattheseclustersmayhaveaccreted bereconciledwithinitialclusterpopulationscontaininglargenumbers ambientgas,allowingstarformationtoproceed. Wethusexploredthe ofyoungclusterswithmassesfargreaterthanamillionsolarmasses. expectedgas-accretionrateasafunctionofthelocalgasdensity. In- AdoptingaKroupa-likeinitialstellarmassdistribution17,weesti- deed,itappearspossibleforNGC1783-likeclusterstoaccreteenough mate that the total stellar masses in the younger sequences, down to gastoformnewstars23(seeMethods). thehydrogen-burninglimit,are372and250solarmasses(NGC1783 AlmostallGalacticglobularclustershostmultiplestellarpopula- sequences A and B, respectively), 527 and 560 solar masses (NGC tions.However,itisstillunclearwhethertheselatterpopulationsorig- 1696 and NGC 411, respectively). Compared with the total cluster inatefromyoungclustersthatformedassingle-agestellarpopulations. masses,theyoungsequencesrepresentmere0.2-2.0%massfractions. Ourobservationsofsecondarystellarpopulationsinintermediate-age TheagedifferencesbetweentheNGC1783starsinsequencesAandB, MagellanicCloudclusterssuggestthatthesameprocessgivingriseto andthoseonthemainsequenceare440millionyearsand520million themmayalsoexplainthemultiplestellarpopulationsseeninatleast years,respectively. ForNGC1696andNGC411,theagedifferences someGalacticglobularclusters. Weaimataddressingthisissueina betweentheclustersyoungandmainsequencesare1.02billionyears follow-upstudy. and1.06billionyears,respectively. ManystarclustersintheMagellanicCloudscontainlargenumbers The Large and Small Magellanic Clouds, the host galaxies of ofstarsoccupyingtheparameterspaceatbluercoloursandbrighterlu- our sample clusters, contain numerous, densely distributed giant minositiesthantheirmain-sequenceturn-offregions26,27. Theseclus- molecular-gas clouds18,19. Massive clusters like those targeted here tersincludeNGC121,NGC1652,NGC1751,NGC1795,NGC1806, quenchtheirinitialstar-formationactivityontimescalesofafewtens NGC 1846, NGC 1852, NGC 1917, NGC 1978, NGC 2121, NGC 2 2154, NGC 339, NGC 416, NGC 419, Hodge 7, Kron 3, Lindsay 1, andLindsay38.Thesebrighterandbluerstarsareusuallydismissedas residualfield-starcontamination. However,ifwell-populatedyounger sequencesare,infact,embeddedinthisparameterspace,thepresence of such simple stellar populations indicates that many clusters may haveexperiencedstarbursteventssometimeaftertheirinitialforma- tion epoch. Among the clusters highlighted here, some – including NGC1806,NGC1846,Lindsay38andNGC419–appeartoexhibit similarfeaturesasNGC1783,NGC1696andNGC411,althoughata lowerlevelofsignificance. ParticularlyforLindsay38andNGC419, theradialdistributionsofthebrightstarsbeyondtheirmain-sequence turn-offregionsareknowntobelessconcentratedthanthebulkcluster starswithsimilarluminosities28,andhenceapopulationofbluestrag- glerslikelycannotexplainthepropertiesofallthosestars. Somemay haveoriginatedfromgasaccretion. Theseclusterswillbetargetedin 0.04 our follow-up studies. Our discovery of clear, well-populated young Sequence A sequencesinNGC1783, NGC1696andNGC411hasrevealedthat 0.03 Sequence B starclustersmayindeedhavethecapacitytoaccretegasfromtheiren- 0.02 vironment. This could, in fact, be the most important route to form secondarystellarpopulationsinyoungmassiveclusters. 0.01 a 0 10 20 30 40 50 60 70 80 90 100 110 1. Gratton.R.G.,Carretta,E.&Bragalia,A.Multiplepopulationsinglob- ularclusters.LessonslearnedfromtheMilkyWayglobularclusters.As- tron.Astrophys.20,50(2012) 2. Piotto, G., et al A Triple Main Sequence in the Globular Cluster NGC R )0.06 2808.Astrophys.J.661,L53–L56(2007) N(+ RGBRC00..0045 34.. MB74eil4do,inn5e,8,LA(.2R.0P.1,.2,e)ettalaωlMCueltniptaleursi:tethllaerppooppuulalatitoionnspuinzz4le7gTouecsandaeee.pAers.trAosnt.roJ-. R) /0.03 phys.J.605,L125–L128(2004) N(0.02 b 5. D’Ercole,A.,Vesperini,E.,D’Antona,F.,McMillan,S.L.W.,&Recchi, S. Formationanddynamicalevolutionofmultiplestellargenerationsin 0.011 0 20 30 40 50 60 70 globularclusters.Mon.Not.R.Astron.Soc.391,825–843(2008) 6. Bekki,K.Secondarystarformationwithinmassivestarclusters: origin ofmultiplestellarpopulationinglobularclustersMon.Not.R.Astron.Soc. 412,2241–2259(2011) 7. Renzini,A. Originofmultiplestellarpopulationsinglobularclustersand 0.1 theirheliumenrichment.Mon.Not.R.Astron.Soc.391,354–362(2008) 0.08 8. Bastian, N., & Lardo, C. Globular cluster mass loss in the context of multiplepopulations.Mon.Not.R.Astron.Soc.453,357–364(2015) 0.06 9. Marigo,P.,Girardi,L.,Bressan,A.,Groenewegen,M.A.T.,Silva,L.,& 0.04 Granato,G.L. Evolutionofasymptoticgiantbranchstars.II.Opticalto 0.02 c far-infraredisochroneswithimprovedTP-AGBmodels.Astron.Astrophys. 482,883–905(2008) 0 10. Bastian, N., Cabrera-Ziri, I., Davies, B,.&Larsen, S.S. Constraining 5 10 15 20 25 30 35 40 45 50 55 R(arcsec) globularclusterformationthroughstudiesofyoungmassiveclusters.I. Alackofongoingstarformationwithinyoungclusters.Mon.Not.R.As- tron.Soc.436,2852–2863(2013) 11. Lu,P.,Deng,L.,&Zhang,X. Bluestragglerformationviaclosebinary masstransfer.Mon.Not.R.Astron.Soc.409,1013–1021(2010) 12. Hills,J.G.,&Day,C.A. StellarcollisionsinglobularclustersAstrophys.J. Figure2|Normalizedradialdistributionsoftheyoungsequenceswithre- 17,L87–L93(1976) specttonormalclusterstarsofsimilarluminosity. RGB:red-giantbranch; 13. Li, C., de Grijs, R. & Deng, L. The binary fractions in the massive RC:redclump.a:NGC1783;b:NGC1696;c:NGC411.Theerrorbarsreflect youngLargeMagellanicCloudstarclustersNGC1805andNGC1818. Poissonian1σuncertainties. Mon.Not.R.Astron.Soc.436,1497–1512(2013) 14. Hunter,D.A.,Elmegreen,B.G.,Dupuy,T.J.&Mortonson,M. Cluster mass function in the Large and Small Magellanic Clouds: fading and size-ofsampleeffects.Astron.J.126,1836–1848(2003) 15. McLaughlin,D.E.,&vanderMarel,R.P. Resolvedmassivestarclusters intheMilkyWayanditssatellites: brightnessprofilesandacatalogof fundamentalparameters.Astrophys.J.Supp.161,304–360(2005) 16. Recchi,S.,&Danziger,I.J. Self-enrichmentinglobularclusters,I.An analyticapproach.Astron.Astrophys.436,145–154(2005) 17. Kroupa,P. Onthevariationoftheinitialmassfunction.Mon.Not.R.As- tron.Soc.322,231–246(2001). 18. Fukui,Y.,&Kawamura,A. Molecularcloudsinnearbygalaxies.ARA&A 48,547–580(2010) 19. Hopkins,P.F.,Quataert,E.,&Murray,N. Thestructureoftheinterstellar mediumofstar-forminggalaxies.Mon.Not.R.Astron.Soc.421,3488–3521 (2012) 20. deGrijs,R.&Parmentier,G. Thelong-termsurvivalchancesofyoung massivestarclusters.Chin.J.Astron.Astrophys.7,155–186(2007) 3 21. deGrijs,R. Arevolutioninstarclusterresearch:settingthescene.Phil. Methods Trans.R.Soc.A.368,693–711(2010) 22. Shustov,B.M.,&Wiebe,D.S. FirstsupernovaeinGlacticglobularclus- ObservationalData ters.Mon.Not.R.Astron.Soc.319,1047–1055(2000) NGC 1783: The NGC 1783 observations were obtained as part 23. Conroy,C.,&Spergel,D.N. Ontheformationofmultiplestellarpopula- tionsinglobularclusters.Astrophys.J.726,36(2011) of Hubble Space Telescope (HST) general-observer programme GO- 24. Pflamm-Altenburg, J., & Kroupa, P. Recurrent gas accretion by mas- 10595 (principal investigator: P. Goudfrooij), using the Advanced sive star clusters, multiple stellar populations and mass thresholds for CameraforSurveys/WideFieldChannel(ACS/WFC).Theclusterwas spheroidalstellarsystems.Mon.Not.R.Astron.Soc.397,488–494(2009) observed through the F435W and F814W filters (with central wave- 25. Naiman, J.P., Ramirez-Ruiz, E., &Lin, D.N.C. Externalmassaccu- mulationontocorepotentials:implicationsforstarclusters,galaxiesand lengths of 435 nm and 814 nm, respectively), which correspond ap- galaxyclusters. Astrophys.J.735,25(2011) proximatelytotheJohnson-CousinsB andI bands,respectively,and 26. Milone,A.P.,Bedin,L.R.,Piotto,G.&Anderson,J.Multiplestellarpop- whichwillbereferredtoassuchhenceforth. Short-exposureimages ulationsinMagellanicCloudclusters.I.Anordinaryfeatureforinterme- were observed for 90 s in the B band and 8 s in the I band, while diateageglobularsintheLMC?Astron.Astrophys.497,755–771(2009) 27. Rich, R. M., Shara, M. M., & Zurek, D. New photometry for the long-exposureimageswereobservedfor680sinbothbands. intermediate-ageLargeMagellanicCloudglobularclusterNGC2121and BecauseNGC1783hasanextendedcore(seebelow),thecluster thenatureoftheLMCagegap.Astron.J.122,842–848(2001) 28. Glatt,K.,etal. Agedeterminationofsixintermediate-ageSmallMagel- region occupies almost the entire image. Therefore, we obtained an lanicCloudstarclusterswithHST/ACS.Astron.J.136,1703–1727(2008) additional set of observations towards the southeast of NGC 1783 as representativefieldregion(HSTprogrammeGO-12257; principalin- Acknowledgements WethankF.Ferraro,P.KroupaandX.K.Liufordis- vestigator: L.Girardi). Itscentreislocatedatadistanceofmorethan cussions. PartialfinancialsupportforthisworkwasprovidedbytheNational 300 arcseconds from the cluster centre, so that it is unlikely signifi- Natural Science Foundation of China through grants 11073001, 11373010 and11473037.C.L.wasalsopartiallysupportedbytheStrategicPriorityRe- cantlyaffectedbytidallystrippedclusterstars. Thedatasetspertain- searchProgramme‘TheEmergenceofCosmologicalStructures’oftheChi- ingtothefieldwerealsoobtainedwiththeACS/WFCintheF435W nese Academy of Sciences (grant XDB09000000). A.M.G. is funded by a andF814Wfilters. Theirtotalexposuretimesare700sand720sfor NationalScienceFoundationAstronomyandAstrophysicsPostdoctoralFel- theBandIbands,respectively.Theseexposuretimesaresufficientto lowshipunderAwardNo. AST-1302765. C.-A.F.-GissupportedbyNational resolvetheyoungsequences. ScienceFoundationgrantAST-1412836. NGC 1696: The NGC 1696 data sets were also obtained as part AuthorContributions C.L., R.d.G. and L.D. jointly designed and coordi- ofHSTprogrammeGO-10595,usingtheACS/WFC.Theclusterwas natedthisstudy. C.L.performedthedatareduction. C.L.,R.d.G.,Y.X.and Y.H.collaboratedonthedetailedanalysis. L.D.providedideasthatimproved observedthroughtheF435WandF814Wfilters. TheimagesofNGC thestudysrobustness.A.M.G.andC.-A.F.-Gledthetheoreticalanalysisofthe 1696arealsocomposedofshort-andlong-exposureframes. Thelong gas-accretionphysics. Allauthorsread,commentedonandjointlyapproved (short)exposuretimesintheB andI bandswere680(90)sand680 submissionofthisarticle. (8)s,respectively. SinceNGC1696isnotasextendedasNGC1783 (seebelow),arepresentativefieldregionwasselectedclosetotheedge AuthorInformation Reprints and permissions information is available at www.nature.com/reprints.Correspondenceandrequestsformaterialsshould oftheNGC1696images.FewstudiestodatehavetargetedNGC1696. beaddressedtoC.L.([email protected]@pmo.ac.cn). Therefore,wederivedthephysicalparametersofNGC1696ourselves. NGC 411: The data sets of NGC 411 were obtained as part of CompetingInterests Theauthorsdeclarethattheyhavenocompetingfi- nancialinterests. HSTprogrammeGO-12257,usingtheWideFieldCamera-3(WFC3). TheclusterwasobservedthroughtheF475WandF814Wfilters. The F475Wfilteriscenteredatawavelengthof475nm; itstransmission curvealsocorrespondsapproximatelytothatoftheJohnsonBband. TheexposuretimesinboththeB andI bandswere700s. NGC411 has a relatively small core (see below), which allowed us to select a representativefieldregionclosetoedgeofourscienceimages. PhotometryandDataReduction We used two independent software packages to perform point- spread-function (PSF) photometry, including DAOPHOT29 within the IRAF environment and DOLPHOT30–32. Our stellar catalogues are based on the DAOPHOT results. We performed the DOLPHOT analy- sisforcomparison,toensurethatourfinalphotometryisnotbiased. The DAOPHOT-generated raw stellar catalogue contains a sharp- nessparameter, whichdescribesthegoodnessofthePSFfit29. Fora ‘good’star,thesharpnessshouldbecloseto0.Wethusconstrainedour sampletostarswithasharpnessbetween-0.5and0.5,whichremoved approximately4%ofobjectsfromourcatalogue.Wecarefullychecked the resulting colour-magnitude diagram and found that the main fea- tures of interest were not affected by this selection. For NGC 1783 andNGC1696,wemergedthestellarsamplesresultingfromtheshort and long exposure times, carefully cross-referencing both catalogues toavoidduplicationofobjectsinthecombinedoutputcatalogue. For NGC1783,theshort-exposure-timecataloguecontributesverylittleto sequencesAandB.ForNGC1696,theshort-exposure-timestarscon- tributeonlymarginallytothefeatureofinterest. 4 regiontowardsthesoutheast(‘field2’). Becausethefeaturesofinter- 0.5 a estareverybright,weonlyconsiderstarswithB≤23mag.Forthese stars, NGC1783iscompact(itscoreradiusis25arcsec)andfield1 0 indeedadequatelyrepresentsthebackground. Wefoundthattheeast- −0.5 ern part of field 2 exhibits a clear, slightly brighter stellar sequence parallel to the main sequence, indicating a significant population of −1 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 unresolvedbinarysystems. Sincethefieldsstellarnumberdensityis low, blending of unrelated stars along the line of sight is negligible; 2] 0.5 b c instead,thisbinarypopulationmayreflectcontaminationbyanearby e s arc 0 star-forming region. We hence selected the eastern part of field 2 as ρ[−0.5 representativefieldregion. Weselectedthreerectangles, eachcover- og ing an area of 1000×1000 pixels2 (∼50×50 arcsec2), near the edge l −1 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 of field 1, as well as four rectangles from the western part of field 2 (coveringthesamearea), toconstructacomplete, combinedfieldre- c 0.5 gion. Toassignequalweightstothestellarcataloguesfrombothre- 0 gions,werandomlyselected ofthefullsampleofstarsdetectedinthe −0.5 fourrectanglesoffield2sstellarcatalogue. Thecombinedstellarcat- aloguebasedonthesesevenrectanglesrepresentsthesynthesizedfield −1 0.8 1 1.2 1.4 1.6 1.8 2 2.2 regionscolour-magnitudediagram. Theclusterregionisroughly1.6 R(arcsec) timeslargerthanthefieldregion(seetheleft-handpanelofExtended DataFigure2). For NGC 1696, we selected an area of 600×4000 pixels2 Figure1|Normalizedradialdistributionsoftheyoungsequenceswithre- (∼30×200arcsec2)neartheedgeoftheimageasrepresentativefield specttonormalclusterstarsofsimilarluminosity. RGB:red-giantbranch; region. TheNGC1696clusterregionisroughly1.7timeslargerthan RC:redclump.a:NGC1783;b:NGC1696;c:NGC411.Theerrorbarsreflect Poissonian1σuncertainties. the field region. The selected cluster and field regions pertaining to NGC1696areshowninthemiddlepanelofExtendedDataFigure2. For NGC 411, we selected a field region covering an area of 800×3500pixels2(∼32×140arcsec2)fromtheclustersperiphery.We DeterminationoftheClusterandFieldRegions avoidedregionsthatwerelocatedclosetotheedgeoftheimage,where thephotometricqualityismarkedlyinferior,likelyowingtotherela- We divided the stellar spatial distribution into 15-20 bins along tively large offsets between the individual science images, combined both the right ascension (α ) and declination (δ ) axes. We J2000 J2000 withinstrumentalpropagationeffects. Althoughourselectionmayin- variedthebinnumberstoensurethatstatisticalscatterwouldnotsig- cludesometidallystrippedclusterstars,thisdoesnotaffectthemag- nificantlyaffecttheshapeofthenumber-densitydistributions.Weused nituderangeofinterest,whichisbright. TheNGC411clusterregion aGaussianfunctiontofitthelatteralongbothaxesanddefinedtheclos- is roughly 1.8 times larger than the field region. The selected clus- estpositionalcoincidenceofbothGaussianpeaksastheclustercentre. TheNGC1783clustercentreislocatedatα = 04h59m08.47s, terandfieldregionsofNGC411areshownintheright-handpanelof J2000 δ = −65◦59(cid:48)17.81(cid:48)(cid:48). ForNGC1696,thecentrecoordinatesare ExtendedDataFigure2. J2000 α = 05h02m11.16s,δ = −67◦59(cid:48)07.66(cid:48)(cid:48),whileforNGC J2000 J2000 411,α = 01h07m56.22s,δ = −71◦46(cid:48)04.40(cid:48)(cid:48). OurNGC 1 Reducing Background Contamination and J2000 J2000 1783andNGC411clustercentresareveryclosetotheclustercentres IsochroneFitting determinedpreviously33,34.WeusedaMonteCarlomethodtoexamine Once we had obtained the cluster and background colour- thespatialdistributionoftheNGC1696starsandestimatetheareasof magnitudediagrams,wegeneratedacommonmagnitude×colourgrid annuliatdifferentradii. Thestellarnumberdensityineachannulusis withcellsizesof0.5×0.25mag2, spanningtherangesfrom(B−I) N(R)/A(R),whereN(R)isthenumberofstarsobservedinanan- =-2.5magto3.5magandfromB =16magto27mag. Thisrange nuluswithradiusR,andA(R)istheareaoftheannulus. Wedefined issufficientlylargetocoverthefullcolour-magnitudediagramsofour theclusters’(2D-projected)coreradiiasthoseradiiwherethedensity targetclusters. Thecellsizeisrelativelylargeforthemainsequences, profiles drop to half the respective central densities. We selected the becauseitwasspecificallydesignedtobepracticallyusefulinthere- areascontainedwithin2coreradiiastheclusterregions. NGC1783 gionsoccupiedbytheyoung, bluesequences, wherethestellarnum- hasalargecoreradius(45-50arcsec,whichisidenticaltothatadopted ber density is lower. We counted the number of background stars in byref. 35,althoughourcoreradiusisslightlylargerthantheirvalue each cell and calculated the number of possible contaminating stars of36.7arcsec. Wecomparedourcataloguewiththeirsandfoundthat in the same cell (corrected for differences in areas covered), which ourphotometryisdeeperand, hence, containsmorefaintstars). The wethenrandomlyremoved. Weconfirmedthatvaryingthecellsizes coreradiusofNGC1696issmaller(∼30arcsec), whilethecorera- from0.3×0.15mag2 to0.5×0.25mag2 forNGC1783wouldnotaf- diusofNGC411isapproximatelyhalfthatofNGC1783(20-25arc- fectthesignificanceofanyofthefeaturesofinterest. ForNGC1696, sec). Hence, theclusterradiiweadoptedforNGC1783, NGC1696 the typical practically useful cell sizes range from 0.4×0.4 mag2 to andNGC411were100arcsec,60arcsecand50arcsec,respectively. 0.5×0.5mag2,whileforNGC411,viablecellsizesrangefromroughly We selected these radii as cluster radii, because of the need to avoid 0.3×0.15mag2 to0.5×0.25mag2. Adoptingmuchlargerorsmaller backgroundcontaminationasmuchaspossible,whilesimultaneously cellsizeswoulderasetheobservedsequences. Wecarefullyexamined ensuring statistically robust results. In Extended Data Figure 1, we theperformanceofourdecontaminationmethodandfoundthattheob- presentthestellarnumber-densityprofiles. servedfeaturesdonotdependontheclusterorfieldregionsselected: ForNGC1783,wesynthesizedthefieldregionscolour-magnitude seeExtendedDataFigures3and4,whereweuseNGC1783asbench- diagram based on a combination of our observations of the clusters mark. InExtendedDataFigure3, weshowthefield-decontaminated peripheryontheimagecontainingthecluster(‘field1’)andthefield colour-magnitude diagrams pertaining to three different samples of 5 Figure2|Spatialdistributionsofclusterandfieldstars.Redandbluepointsrepresentclusterstarsandtheadoptedfieldstars,respectively.a.NGC1783;b. NGC1696;c.NGC411. 17.5 a: R ≥30” 17.5 b: R ≥60” 17.5 c: R ≥90” 18 18 18 18.5 18.5 18.5 19 19 19 g)19.5 g)19.5 g)19.5 a a a m m m B ( 20 B( 20 B ( 20 20.5 20.5 20.5 21 21 21 21.5 21.5 21.5 22 22 22 0 0.5 1 0 0.5 1 0 0.5 1 B–I(mag) B–I(mag) B–I (mag) Figure3|Field-stardecontaminatedcolour-magnitudediagramsforsamplesofstarsatdifferentradiiinNGC1783.a.R≥30(cid:48)(cid:48);b.R≥60(cid:48)(cid:48);c.R≥90(cid:48)(cid:48). 6 ters, NGC 1783, NGC 1696 and NGC 411 display extended main- sequence turn-off regions26,36, which renders determination of their main-sequenceagesdifficult.However,ithasbeenreportedthatagesof −65.96 18 suchintermediate-agestarclusterscanbeconstrainedbyconsideration ag)20 eg.)−65.98 ovfietwh)e,irwthigichht sruebpgreisaennttbtrhaencshteelsl3a7r,3e8v(obluuttiosenearryefs.ta3g9efsotarrsanenotpeproosnincge m22 d −66 B ( RA ( they have exhausted the hydrogen in their cores through nuclear fu- 24 −66.02 sion.Indeed,allofoursampleclustersexhibittightsubgiantbranches. a b Thefinalagedeterminationyieldslog(tyr−1)=9.15, 9.17and9.14 26 −66.04 forNGC1783,NGC1696andNGC411,respectively. 0 1 2 3 74.7 74.75 74.8 74.85 B–I (mag) DEC (deg.) We next determined the ages of each of the blue sequences. For NGC1783,sequencesAandBarecharacterizedbyagesoflog(tyr−1) −65.95 = 8.65 and 8.95, respectively. The NGC 1783 main-sequence stars, 18 as well as those in sequences A and B, share the same metal abun- g)20 g.) −66 dance,Z=0.008(40%ofsolarmetallicity),andvisualextinction,AV ma22 de = 0.06 mag. We adopted a true distance modulus for NGC 1783 of B (24 RA(−66.05 (m−M)0 =18.46mag(correspondingtoadistanceof49.2kilopar- secs).TheyoungsequenceinNGC1696isadequatelycharacterizedby c d 26 −66.1 alog(tyr−1)=8.70isochronewiththesamemetallicityastheclusters 0 1 2 3 74.75 74.8 74.85 74.9 mainsequence,Z =0.004(20%solar). However,theyoungsequence B–I (mag) DEC (deg.) appears0.06magbluerthanthezero-agemainsequenceoftheclusters bulkstellarpopulation. Anenhancedheliumabundance(Y =0.330) −65.95 18 canexplainthecolouroffset40,whereY =0.256fortheclustersmain −66 sequence.TheadoptedextinctionanddistancemodulusforNGC1696 ag)20 eg.) areAV =0.10magand(m−M)0=18.50mag(50.1kiloparsecs),re- B (m22 RA (d−66.05 =sp8ec.5ti0v.elIyt.hTashethyeosuanmgesemqeuteanllcieciitnyNasGtChe4c1l1ushtaesrsanmaaginesoefqluoegn(ctey,rZ−1=) 24 −66.1 e f 0.002. Itsyoungsequenceisalsoveryblue,whichcanagainonlybe 26 explainedifitischaracterizedbyanenhancedheliumabundanceofY −66.15 0 1 2 3 74.75 74.8 74.85 74.9 =0.400comparedwithY =0.252fortheclustersmainsequence.Fore- B–I (mag) DEC (deg.) groundextinctionofA =0.25magisappropriateandouradoptedtrue V distancemodulusis(m−M) =18.90mag(60.3kiloparsecs). 0 2 Blue Straggler Stars as possible origin of the Figure 4 | Field-star decontaminated colour-magnitude diagrams of NGC youngersequences? 1783 for three different adopted reference fields. a, b. Resulting colour- magnitudediagram(a)basedonfield-starsampledrawnfromtheimagecontain- One possible explanation for these bright sequences is that they ingthecluster(b). c,d. Aspanelsaandb,butforarepresentativefieldregion arecomposedofbluestragglerstars. Therefore,weinvestigatedtheir takenfromaseparateimage.e,f.Aspanelscandd,butforadifferentfieldregion relativeradialconcentrationwithrespecttostarsthathavesimilarlu- takenfromthesame,separateimage. minosities. In NGC 1783, NGC 1696 and NGC 411, the latter stars are mostly red-giant-branch and red-clump stars: see Extended Data Figure7. However, as shown in Figure 2, the stars defining the bright se- cluster members, at radiiR ≥ 30(cid:48)(cid:48), R ≥ 60(cid:48)(cid:48) and R ≥ 90(cid:48)(cid:48). They quences are all less centrally concentrated than red-giant stars with allexhibitdistinctyoungersequences. InExtendedDataFigure4,we similar luminosities. If they are genuine blue stragglers, irrespective select representative field regions from different images (two from a of their origin, they are expected to be more centrally concentrated separateimageandonefromtheimagewhichalsocontainstheclus- thansimilar-luminosityred-giantstars,becausebluestragglersareex- teritself).Theobservedyoungsequencesremainclearlyvisibleforall pectedtobemoremassivethanredgiants. Dynamicalinteractionsare threebackgroundregionsadopted.InExtendedDataFigure5,weshow also unlikely to have redistributed all blue stragglers to the outskirts the decontaminated colour-magnitude diagrams resulting from adop- of our sample clusters, since the typical dynamical timescales41 are tionofdifferentgridsizes.Thisfigureshowsthattheobservedfeatures muchlongerthantheclusterscurrentages. Inaddition, theflatclus- arealmostindependentofgridsize. Extensivetestsalsoshowedthat ter cores observed for NGC 1783, NGC 1696 and NGC 411 render thesequencesfoundintheNGC1696andNGC419colour-magnitude theprobabilityofcore-collapseeventshavingoccurredveryunlikely. diagrams are similarly well-defined. This confirms that the observed Corecollapsewouldproduceacuspyradialdensityprofile42andsuch sequencesarephysicallyrealratherthancausedbystatisticalsampling aprocessisaprerequisiteforthepresenceofacoevalcollisionalblue effects. We also found that, for the adopted cell sizes, the reduced stragglerpopulation.Themoreextendedradialdistributionsofthestars colour-magnitude distributions are similar in appearance to the real intheyoungersequencescomparedwiththedominantclusterpopula- background colour-magnitude diagrams. Our adopted method there- tionsargueagainststellarcollisionsintheclustercoreshavingplayed foreperformsadequately. FromExtendedDataFigure6(panelsa, e animportantrole. andi),onecandeducethatthesebrightsequencesareindeedalready embeddedintheunreducedcolour-magnitudediagrams. 3 GasAccretionfromtheInterstellarMedium Weobtainedbestfitstoallobservedsequences,includingtheclus- tersmainsequences,basedonmatchingtheobservationswiththeoreti- Wefollowedthemethodofref.23toestimatetheregionsofparam- cal stellar isochrones9. Similarly to other intermediate-age star clus- eterspacewhereanNGC1783-likestarclusterwithamassof1.8×105 7 17.5 17.5 17.5 a:0.30 ×0.15mag 2 b:0.40 ×0.20mag 2 c:0.50 ×0.25mag 2 18 18 18 18.5 18.5 18.5 19 19 19 ag)19.5 ag)19.5 ag)19.5 m m m B ( 20 B ( 20 B ( 20 20.5 20.5 20.5 21 21 21 21.5 21.5 21.5 22 22 22 0 0.5 1 0 0.5 1 0 0.5 1 B–I(mag) B–I (mag) B–I (mag) Figure5|Field-stardecontaminatedcolour-magnitudediagramsofNGC1783forthreedifferentgridsizes. a. 0.30×0.15mag2; b. 0.40×0.20mag2; c. 0.50×0.25mag2. 16 16 16 16 18 18 18 18 20 20 20 20 22 a 22 b 22 c 22 d 0 1 2 0 1 2 0 1 2 0 1 2 18 18 18 18 ) g a m 20 20 20 20 ( B 22 e 22 f 22 g 22 h 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 18 18 18 18 20 20 20 20 22 i 22 j 22 k 22 l −0.5 0 0.5 1 1.5 −0.5 0 0.5 1 1.5 −0.5 0 0.5 1 1.5 −0.5 0 0.5 1 1.5 B –I (mag) Figure6|Colour-magnitudeanalysis.Firstcolumn:rawcolour-magnitudediagrams.Secondcolumn:field-decontaminatedcolour-magnitudediagrams(alsoshown inFigure1). Thirdcolumn:colour-magnitudediagramsoftherepresentativefieldregions. Fourthcolumn:stellarcolour-magnitudedistributionsthatwereremoved fromtherawcatalogues.Firstrow(a-d):NGC1783;secondrow(e-h):NGC1696;thirdrow(i-l):NGC411. 8 17 17 17 18 18 18 19 19 19 g) g) g) a a a m m m20 B( B ( B ( 20 20 21 21 21 22 a b c 22 22 23 0 1 2 3 0 1 2 3 4 0 0.5 1 1.5 2 B–I (mag) B–I (mag) B–I (mag) Figure7|Colour-magnitudediagramshighlightingspecificfeatures.a,Purpleanddarkgreensquares:starsinNGC1783sequencesAandB,respectively.Dark greencircles:correspondingred-giant-branchandred-clumpstars,usedforcomparisonwithsequenceB.Thecombinationofdarkgreenandpurplecirclesrepresents thesampleusedforcomparisonwithsequenceA.b.Purplesquares:NGC1696young-sequencestars;redcircles:correspondingred-giant-branchandred-clumpstars usedforcomparison.c.Asthemiddlepanel,butforNGC411. solarmassesandahalf-massradiusof11.4parsecs43couldaccretethe requiredmasstoformtwoadditionalgenerationsofstars:onecontain- ing 250 solar masses in stars some 520 million years after the initial star-formation event, and a subsequent generation composed of 370 solar masses of stars 440 million years later. The key equations in ref. 23areequations(3),(5)and(8). Forallcalculationsweassumed a star-formation efficiency of 10% (which implies that only 10% of theavailablegasisconvertedintostars). Weexploredtwoprocesses throughwhichaclustercanaccretegasfromtheinterstellarmedium23, oneowingtogravity(‘Bondiaccretion’),andoneduetosweepingup materialastheclusterorbitsarounditshostgalaxyscentre. Thelatter processinvolvessomeinitialintraclustergaswhichinteractscollision- ally with the interstellar gas. The accretion rates from both of these processesdependonboththegasdensity,n,andtherelativevelocity ofclusterandgas,V. Ram-pressurestrippingcanlimittheaccretion, andthisprocessalsodependsonnandV. ExtendedDataFigure8showstheallowed(shaded)regionsofpa- rameterspacein(n,V)thatwouldenableaclustertoaccretethede- siredamountofgasintheperiodbetweenstar-formationevents. This figure assumes accretion from a volume-filling interstellar medium overtheentiredurationbetweenrespectivegenerations(Bondiaccre- tion).TheBondilineiscurved,becausethisaccretionratealsodepends onthegassoundspeed,whichwehaveassumedtobe10kms−1(i.e., gas at a temperature of ∼104 K). Anything to the upper right of the Figure8|Gas-accretiondiagnosticdiagram. Theshadedregionsindicatethe ‘Ram’linewillstripthegasfromthecluster.Belowthatline,andfora parameterspacewhereanNGC1783-likeclustercanaccretetherequiredmassto givendensity,theBondilinedefinestheupperlimittotheclustersbulk formthetwoadditionalgenerationsofstars,namelyoneof250solarmassesover velocity that would be allowed for the cluster to accrete this amount 520millionyears(blue),andasecondof370solarmassesover440millionyears ofgas. Inotherwordsatavelocitybelowthecurve,theclusterwould (green). Wehaveassumedastar-formationefficiencyof10%forallcalculations accretegasmorequickly, and, forinstance, ifthestar-formationeffi- inthisfigure.Theregionstotherightofthe‘Gravity’curvescorrespondtowhere Bondiaccretioncanaccumulateatleasttherequiredmassandtheregionstothe ciencywerelessthan10%, itcouldstillformthesamemassofstars rightofthe‘Sweep’curvescorrespondtowhereaccretionbycollisionalsweeping overthesameperiod. Conversely,atagivendensity,sweepingupof upofambientinterstellargasbyseedintraclustergascanaccumulateatleastthe gasismoreefficientatlargervelocities,sothedashedlineshowsthe requiredmass.Theparameterspaceabovethe‘Ram’curvesareexcludedbecause lowerlimittothevelocitythatwouldberequiredtoreachthedesired rampressurestripsclustersoftheirgasinthoseregions. amountofgas. ExtendedDataFigure9showstwoexamplesofhowtheaccreted mass could accumulate over time for the Bondi regime (solid lines) and the sweeping regime (dashed lines). For the Bondi regime, we usedarelativevelocityof4kms−1 andadensityof0.3cm−3. For 9 40. Dotter, A., Chaboyer, B., Jevremovic´, D., Kostov, V., Baron, E., &Fer- guson, J. W., The Dartmouth Stellar Evolutionary Database. Astro- phys.J.Supp.178,89–101(2008): http://stellar.dartmouth.edu/models/index.html. 41. Binney,J.,&Tremaine,S., GalacticDynamics.Princeton,NJ,Princeton UniversityPress(1998) 42. Ashman, K. M., & Zepf, S. E., Globular cluster systems (Cambridge Astrophys.Ser.30).Combridge,UK,CambridgeUniv.Press(1998) 43. Goudfrooij, P., Girardi, L., & Kozhurina-Platais, V. Extended main se- quenceturnoffsinintermediate-agestarclusters:acorrelationbetween turnoffwidthandearlyescapevelocity.Astrophys.J.797,35–56(2014) 44. vanderMarel, R.P., Alves, D.R., Hardy, E., &Suntzeff, N.B., New understandingofLargeMagellanicCloudstructure,dynamics,andorbit fromcarbonstarkinematics.Astron.J.124,2639–2663(2002). Figure9|Gasmassaccretedfromtheinterstellarmediumasafunctionof time. Wehaveadoptedastar-formationefficiencyof10%andcalculatedrepre- sentativeinterstellargas-accretionframeworksthatcanexplainthestellarmasses inthesecondarysequencesAandBinNGC1783. FortheBondiregime(solid lines),weusedarelativevelocityof4kms−1andadensityof0.3cm−3.Forthe sweepingregime(dashedlines),weusedavelocityof50kms−1andadensity of0.05cm−3.Theblueandgreendatapointsindicatethestellarmassesandage offsetsofNGC1783sequencesAandB,respectively. Theerrorbarsrepresent uncertaintiesinthestar-formationefficiencyof10%.- thesweepingregime,weusedavelocityof50kms−1andadensityof 0.05cm−3 (whichissimilartotherotationvelocityatthepositionof NGC1783withrespecttotheLargeMagellanicCloudscentre44).The datapointsshowthesemasses,with150solar-masserrorbarsdivided bythestar-formationefficiencyof10%. 29. Davis,L.E.AReferenceGuidetotheIRAF/DAOPHOTPackage http://iraf.noao.edu/iraf/web/docs/recommend.html (1994) 30. Dolphin,A.DOLPHOTuser’sguide,version2.0. http://americano.dolphinsim.com/dolphin/dolphin.pdf (2013) 31. Dolphin,A.DOLPHOT/ACSuser’sguide,version2.0. http://americano.dolphinsim.com/dolphin/dolphinACS.pdf (2011) 32. Dolphin,A.DOLPHOT/WFC3user’sguide,version2.0. http://americano.dolphinsim.com/dolphin/dolphinWFC3.pdf (2011) 33. Werchan, F., & Zaritsky, D. The star cluster of the Large Magellanic Cloud:structuralparameters.Astron.J.142,48–58(2011) 34. Refelski, M., & Zaritsky, D. The star cluster of the Small Magellanic Cloud:agedistribution.Astron.J.129,2701–2713(2005) 35. Niederhofer,F.,etal. Conflictingevidenceofagespreadsfromthemain sequenceturn-offandredclumpinintermediate-ageclustersintheLMC. Astron.Astrophys.accepted(2015) 36. Girardi,L.,etal. Anextendedmain-sequenceturn-offintheSmallMag- ellanicCloudstarclusterNGC411.Mon.Not.R.Astron.Soc.431,3501– 3509(2013) 37. Li,C.,deGrijs,R.,&Deng,L. Theexclusionofasignificantrangeof agesinamassivestarcluster.Nature516,367–369(2014) 38. Bastian,N.,&Niederhofer,F. Themorphologyofthesubgiantbranch andredclumprevealnosignofagespreadsinintermediate-ageclusters. Mon.Not.R.Astron.Soc.448,1863–1873(2015) 39. Goudfrooij, P., et al. On the interpretation of subgiant branch mor- phologiesofintermediate-agestarclusterswithextendedmainsequence turnoffs.Mon.Not.R.Astron.Soc.450,1693–1704(2015) 10