ACCEPTEDBYTheAstrophysicalJournalLetters,DECEMBER20,1999 PreprinttypesetusingLATEXstyleemulateapjv.04/03/99 FORMATIONOFMILLISECONDPULSARSWITHHEAVYWHITEDWARFCOMPANIONS. EXTREMEMASSTRANSFERONSUB-THERMALTIMESCALES THOMASM.TAURIS1,EDWARDP.J.VANDENHEUVEL1,GERRITJ.SAVONIJE1 AcceptedbyTheAstrophysicalJournalLetters,December20,1999 ABSTRACT We have performed detailed numerical calculations of the non-conservative evolution of close X-ray binary systems with intermediate-mass(2.0 – 6.0M⊙) donorstars and a 1.3M⊙ accreting neutronstar. We calculated the thermal response of the donor star to mass loss, in order to determine its stability and follow the evolution 0 of the mass transfer. Under the assumption of the “isotropic re-emission model” we demonstrate that in many 0 casesitispossibleforthebinarytopreventaspiral-inandsurviveahighlysuper-Eddingtonmass-transferphase 0 (1≪M˙/M˙ <105) on a sub-thermal timescale, if the convective envelope of the donor star is not too deep. Edd 2 ThesesystemsthusprovideanewformationchannelforbinarymillisecondpulsarswithheavyCOwhitedwarfs n and relatively short orbital periods (3–50 days). However, we conclude that to produce a binary pulsar with a a O-Ne-Mg white dwarf or P ∼1 day (e.g. PSR B0655+64)the abovescenario doesnotwork, and a spiral-in orb J phaseisstillconsideredthemostplausiblescenariofortheformationofsuchasystem. 3 Subjectheadings:stars: evolution,mass-loss,neutron—whitedwarfs—binaries:close 1 v 1. INTRODUCTION tributedtotheirinabilitytotransfermassinsuchastablemode 3 that the system becomes a persistent long-lived X-ray source Recentlyalargenumberofbinarymillisecondpulsars(BM- 1 (vandenHeuvel1975;Kalogera&Webbink1996). Belowwe SPs)withrelativelyheavywhitedwarf(WD)companionshave 0 investigateforthese systemshowthe stability ofthe RLO de- been reported. These pulsars form a distinct class of BM- 1 pends on the evolutionary status of the donor (and hence the SPs (cf. Table 1) which are characterized by relatively slow 00 spinperiods(Pspin≃10- 200ms)andhighperiodderivatives: orbitalperiod)attheonsetofmasstransfer. 0 10- 20<P˙ <10- 18. IthasbeensuggestedthatsuchBMSPs spin 2.1. Numericalcomputations / evolved througha common envelope and spiral-in phase (e.g. h van den Heuvel 1994). This gives a natural explanation for WehavecalculatedtheevolutionofalargenumberofX-ray p - theircloseorbitsandthepresenceofarelativelyheavyCO/O- binarieswithadonorstarofmass2≤M2/M⊙<6anda1.3M⊙ o Ne-MgWD,ifthemasstransferwasinitiatedwhilethedonor accretingneutronstar. Boththeradiusofthedonorstaraswell r star (the progenitorof the WD) ascended the AGB. However, as its Roche-lobe are functionsof time and mass (as a conse- t s it has been argued that a neutron star engulfed in a common quence of nuclear burning, magnetic braking and other tidal a envelopemightexperiencehypercriticalaccretionandthereby spin-orbit couplings). We used an updated version of Eggle- : v collapseintoablackhole(e.g. Chevalier1993;Brown1995). ton’snumericalcomputercode(Polsetal. 1998)tokeeptrack Xi IfthispictureiscorrectthentheseBMSPscannothaveformed ofthe stellar evolutionandincludeda numberofbinaryinter- inacommonenvelopeandspiral-inphase. actionstocarefullyfollowthedetailsofthemass-transferpro- ar Hereweinvestigateanalternativescenarioforproducingthe cess. Foralldonorstarsconsideredherewe assumeda chem- mildlyrecycledBMSPswithHeorCOWDincloseorbits,in ical composition of X=0.70 and Z=0.02, and a mixing-length which a 2–6M⊙ donorstar, with a non-(or partly)convective parameter of α=l/Hp =2.0. We refer to Tauris & Savonije envelope,transfersmassonasub-thermaltimescaleandyetin (1999)foradetaileddescriptionofourcomputercode. adynamicallystablemode. 2.2. Highlysuper-Eddingtonmasstransfer 2. STABILITYCRITERIAANDMODEOFMASSTRANSFER Themaximumaccretionrateontoaneutronstarisgivenap- The stability and nature of the mass transfer is very impor- proximatelybytheEddingtonlimitforsphericalaccretionofa tantinbinarystellarevolution.Itdependsontheresponseofthe hydrogengas,M˙Edd=1.5×10- 8M⊙ yr- 1. Ifthemass-transfer ˙ mass-losing donorstar and of the Roche-lobe(e.g. Paczynski rate fromthe donorstar, M is largerthan thislimit, radiation 2 1976;Soberman,Phinney&vandenHeuvel1997). Themass pressurefromtheaccretedmaterialwillcausetheinfallingmat- transferisstableaslongasthedonorstar’sRoche-lobecontin- tertobeejectedfromthesystematarate: uestoenclosethestar. Otherwiseitisunstableandproceedson |M˙|=|M˙ |- M˙ ≃|M˙ | ifM˙ ≫M˙ 2 Edd 2 2 Edd theshortestunstabletimescale. In systems with very large mass-transfer rates, matter piles As long as the mass of the donor, M2 is less than 1.8M⊙ up around the neutron star and presumably forms a growing, the mass transfer will be dynamically stable for all initial or- bloatedcloudengulfingalargefractionoftheaccretiondisk.A bital periods (e.g. Tauris & Savonije 1999). These LMXBs system will only avoid a spiral-in if it manages to evaporate aretheprogenitorsoftheBMSPswithaheliumWDcompan- the bulk of the transferred matter via the liberated accretion ion. TheobservationalabsenceofX-raybinarieswithRoche- energy. This would require the radius of the accretion cloud, ˙ ˙ lobefillingcompanionsmoremassivethan∼2M⊙hasbeenat- rcl > RNS|M2|/MEdd in order for the liberated accretion en- 1CenterforHigh-EnergyAstrophysics,andAstronomicalInstitute“AntonPannekoek”,UniversityofAmsterdam,Kruislaan403,NL-1098SJAmsterdam,The Netherlands;[email protected],[email protected],[email protected] 1 2 FORMATIONOFMILLISECONDPULSARSWITHHEAVYWHITEDWARFCOMPANIONS ergytoejectthetransferedmaterial(∼0.1M˙Eddc2∼> 12M˙2v2esc, isexhausted(g). The0.602M⊙corethenhasachemicalcom- wherev2 =2GM /r ;R istheradiusoftheneutronstar). position of 19% C, 79% O and 2% Ne. It is surroundedby a esc NS cl NS If thematerialwhichisto beejected comescloserto theneu- 0.016M⊙ envelope (16% H, 82% He, 1% N14). The central tronstaritwillhavetoomuchnegativebindingenergyinorder densityisρc=4.13×104gcm- 3andR2=0.21R⊙. Fromhere fortheliberatedaccretionenergytoexpelit. Atthesametime onthestarcontractsandsettlesasahotCOwhitedwarf. r must be smaller than the Roche-lobe radius of the neutron We have now demonstrateda scenariofor producinga BMSP cl star duringthe entireevolution,if formationofa commonen- withthesamecharacteristicsasthoselistedinTable1. velope(CE)istobeavoided2. A simple isotropic re-emission model will approximately re- 3.2. TheP –M diagram main valid for our scenario. In this model it is assumed that orb WD matter flows over conservatively from the donor star to the InFig.2wehaveplottedthecalculatedfinalorbitalperiods vicinity of the neutron star before it is ejected with the spe- as a function of the mass of the white dwarf companion (the cific orbitalangularmomentumoftheneutronstar. Assuming remnantofthedonor)foragiveninitialmassofthedonorstar. thistobethecasewefindthat,evenforextremelyhighmass- ThevaluesfortheBMSPswhichoriginatedfromabinarywith ˙ ˙ transferrates(|M2|>104MEdd),thesystemcanavoidaCEand alow-masscompanion(theformerLMXBswithM2∼<1.8M⊙ spiral-inevolution. locatedontheupperbranch)aretakenfromTauris&Savonije (1999). These white dwarfs are expected to be helium WD – 3. RESULTS unlesstheinitialorbitalperiodwasverylarge(Porb>150days) soa relativelyheavyheliumcoredevelopedpriortotheRLO, 3.1. Acasestudy:M2=4.0M⊙ andPorb=4.0days inwhichcasetheheliumcorelaterignitedformingaCOWD. InFig.1weshowtheevolutionofabinaryinitiallyconsist- ThefinalproductofX-raybinarieswithM2>2M⊙areseento ingofaneutronstarandazeroagemain-sequencecompanion deviatesignificantlyfromthe low-massbranch. Thereasonis starwithmassesMNS=1.3M⊙ andM2=4.0M⊙,respectively, theformersystemshadalargemassratio,q≡M2/MNS which andinitialorbitalperiodPorb=4.0days. causedthebinaryseparationtoshrinkinitiallyuponmasstrans- At the age of t =176.6 Myr the companion has evolved to fer–cf. Fig.1. Suchsystemsonly“survive”themass-transfer fillitsRoche-lobe(R2=8.95R⊙;Teff=9550K)andrapidmass phaseif the envelopeof the donoris radiativeor slightly con- transferisinitiated(A).Thedonorstarhasjustevolvedpastthe vective.Thissetsanupperlimitontheinitialorbitalperiodfor MShookintheHR-diagramandisburninghydrogeninashell a given system. If the donoris in a wide binary it developsa arounda0.56M⊙heliumcore.Priortothemass-transferphase, deep convectiveenvelopepriorto filling its Roche-lobeand it aradiation-drivenwind(|M˙2|∼4×10- 10M⊙ yr- 1)hascaused willthereforeexpandrapidlyinresponsetomasslosswhich,in thedonortodecreaseitsmassslightly(M2=3.99M⊙)andcon- combinationwiththeorbitalshrinking,willresultintheforma- sequentlyresultedinaslightwideningoftheorbit(P =4.02 tionofaCEanda(tidallyunstable)spiral-inevolution. orb days).OncethedonorfillsitsRoche-lobeitisseentolosemass InFig.3weshowhowthefinalorbitalperiodandthemassof ataveryhighrateof|M˙2|≃4×10- 5M⊙yr- 1=2.7×103M˙Edd. theWD dependson theinitial orbitalperiodfora binarywith Atthisstagethedonorhasonlydevelopedaverythinconvec- M2=4.0M⊙. WenoticethatthequestionofinitiatingRLObe- tive envelope of size Zconv =0.015R⊙, so its envelope is still foreoraftertheterminationofhydrogencoreburning(caseA radiativeandwillthereforeshrinkinresponsetomassloss. At or early case B, respectively) is important for these relations. t =176.7Myrits radiushasdecreasedtoa minimumvalueof For initial P <2.4 days (case A RLO), Pf decreases with orb orb 3.38R⊙, but now Zconv =0.97R⊙. At this point (s) the donor increasingPorb. Thereasonissimplythatinthesesystemsthe hasamassof1.76M⊙,Teff=5640K,andPorb=1.59days.The donor star is still on the the main-sequence and the mass of donorexpandsagain,butshortlythereafter,itsrateofexpansion its helium core, at the onset of RLO, increases strongly with ˙ ˙ slowsdowncausing|M |todecreaseto∼10M . P andthereforetheamountofmaterialtobetransferred(the 2 Edd orb The mass transferceases (B) when the donorhas an age of donor’senvelope)decreases with P . Since the orbitwidens orb 178.3Myr. AtthisstagePorb=8.11days,R=6.68R⊙,Zconv= efficientlyneartheendofthemasstransfer,whenthemassra- 0.07R⊙andTeff=12700K.Themassofthedonoris0.618M⊙. tio between donorand accretorhas been inverted(cf. Fig. 1), Itstillhasa0.56M⊙ heliumcore,butnowonlya0.06M⊙ en- PofrbwillalsodecreaseasafunctionofinitialPorb. However,for velope consisting of 16% H and 82% He. The mass-transfer P >2.4days(earlycase BRLO)the finalorbitalperiodin- orb phase(A–B)lastsrelativelyshort: t =1.7Myr,andhencethe creaseswithinitialorbitalperiodasexpected–thecoremassof neutronstarwillonlyaccrete:∆MNSX=tXM˙Edd=0.03M⊙.This the donoronly increasesslightly (due to hydrogenshell burn- ˙ leadstorelativelargevaluesofPspinandPspinforthe(mildly)re- ing)asafunctionofinitialPorb. cycledpulsar. Asthemass-transferrateisalwayshighlysuper- EddingtonduringtheRLO,andtheaccretingneutronstarwill 3.3. Theinitial(M ,P )parameterspace beenshroudedbyathick(bloated)disk,itisdoubtfulwhetherit 2 orb willbeobservableasanX-raybinaryduringthisphase–except In Fig. 4 we outline the results of our work in a diagram verybrieflyjustattheonsetandneartheendoftheRLO. showing the fate of a binary as a function of its initial P orb We followedtheevolutionofthedonorstarfurtheron. The and the value of M . We conclude that X-ray binaries with 2 donorcontinuesto burnhydrogeninits lightenvelope. Att = 2∼<M2/M⊙<6canavoidaspiral-inandCEevolutionifPorb 186.4Myr(f)theheliumburningis finallyignited(L /L > isbetween1–20days,dependingonM . IftheinitialP istoo He H 2 orb 10) in the core which now has a mass of 0.596M⊙. After 70 short,thesystemswillobviouslyenteraCEphase,sincethese Myr(t=253.8MyrsincetheZAMS)thecore-heliumburning systemalwaysdecreasetheirorbitalseparationwhenthemass 2Note,thatifnoefficientcoolingprocessesarepresentintheaccretiondiskthentheincomingmatterretainsitsnet(positive)energyandiseasilyejectedinthe formofawindfromthedisk(Narayan&Yi1995;Blandford&Begelman1999).Evenifthearrivinggasisabletocool,interactionsbetweenthereleasedradiation fromthisprocessandtheinfallinggasmayalsohelptoejectthematter.Inbothcasesrclcanbesmallerthanestimatedabove. TAURIS,VANDENHEUVEL&SAVONIJE 3 transferisinitiated3. Ontheotherhand,iftheinitialP istoo progenitorcandidateforaBMSPwithaheavyWD. orb large the donor develops a deep convective envelope prior to ItisseenfromFig.2thatwecannotreproducethesystems RLO and a runaway mass-transfer event is unavoidable, also with very massive O-Ne-Mg WD or the short orbital periods leading to a CE formation. For systems with M2 ∼< 1.8M⊙ (∼<3days)observedinsomesystemswithaCOWD.Wethere- and initial P <1 day the outcome is a BMSP with an ultra foreconcludethatthesebinariesmostlikelyevolvedthrougha orb low-massdegeneratehydrogenstar(e.g. PSRJ2051–0827,cf. CE phase where frictional torques were responsible for their Ergma,Sarna&Antipova1998). present short Pf (cf. thin lines in Fig. 2 and gray area in orb Fig. 4). These systems thereforeseem to originatefrombina- 4. DISCUSSION rieswhichinitiallyhadarelativelylargeP andcaseCRLO– orb We have now demonstrated how to form a BMSP with a otherwiseifPorb wassmallthestellarcomponentswouldhave relativelyheavy(Heor CO)WD companionwithoutevolving coalescedeitherinthespiral-inprocess,orasaresultofgravita- through a CE phase. If a substantial fraction of BMSPs have tionalwaveradiationshortlythereafter(typicallywithin1Gyr evolved through a phase with super-Eddington mass transfer forsystemssurvivingcaseBRLOandspiral-in). onasub-thermaltimescale(afewMyr),thiswilleliminatethe needforalongX-rayphase. Thiswouldthereforehelpsolving We thanktheParkesMultibeamSurveyteamandtheSwin- the birthrate problembetween BMSPs and LMXBs (Kulkarni burne Pulsar Group for releasing binary parameters prior to &Narayan1988)forsystemswithPf <50days. publication. We appreciatecommentsfromEneErgmaonthe orb It has recently been suggested (Podsiadlowski & Rappaport issue of formingBHWD systems. T.M.T.wouldlike to thank 1999; King & Ritter 1999) that Cygnus X-2 descended from Gerry Brown for discussions and hospitality at Stony Brook. anintermediate-massX-raybinaryviaascenariowhichresem- T.M.T. acknowledges the receipt of a Marie Curie Research blestheonedescribedhere. We confirmthatCygnusX-2isa GrantfromtheEuropeanCommission. REFERENCES BlandfordR.D.&BegelmanM.C.,1999,MNRAS303,L1 NarayanR.&YiI.,1995,ApJ.444,231 BrownG.E.,1995,ApJ.440,270 Paczynski B., 1976, in: Structure and Evolution in Close Binary Systems, ChevalierR.A.,1993,ApJ.411,L33 eds: P.P.Eggleton,S.Mitton,J.Whealan,Proc.IAUSymp.73,Dordreicht, EdwardsR.,etal.,1999,inpreparation Reidel,p.75 ErgmaE.,SarnaM.J.&Antipova,J.,1998,MNRAS300,352 PodsiadlowskiP.&RappaportS.,1999,ApJ.submitted,astro-ph/9906045 KalogeraV.&WebbinkR.F.,1996,ApJ.458,301 Pols O.R., Schröder K.P., Hurley J.R., Tout C.A. & Eggleton P.P., 1998, Kippenhahn R. & Weigert A., 1990, Stellar Structure and Evolution, A&A MNRAS298,525 Library,Springer-Verlag SobermanG.E.,PhinneyE.S.&vandenHeuvelE.P.J.,1997,A&A327,620 KingA.R.&RitterH.,1999,MNRAS,309,253 TaurisT.M.&SavonijeG.J.,1999,A&A350,928 KulkarniS.R.&NarayanR.,1988,ApJ.335,755 vandenHeuvelE.P.J.,1975,ApJ.198,L109 ManchesterR.N.,etal.,1999,toappearin:IAUColloq.177,PulsarAstronomy vandenHeuvelE.P.J.,1994,A&A291,L39 –2000andBeyond,eds:M.Krameretal.(ASPConf.Series). 3Inthesenarrowbinariestheamountofavailableorbitalenergy(apossibleenergysourceforprovidingtheoutwardejectionoftheenvelope)issmallandhence theneutronstarismostlikelytospiralintowardthe(unevolved)coreofthedonor,formingaThorne-Zy˙kow-likeobject. Inthatcasetheneutronstarwillprobably undergohypercriticalaccretionandcollapseintoablackhole. 4 FORMATIONOFMILLISECONDPULSARSWITHHEAVYWHITEDWARFCOMPANIONS TABLE 1 OBSERVED PULSARS WITH A“HEAVY” WD COMPANION ˙ PSR P f Mobs P P orb WD spin spin (days) (M ) (M ) (ms) ⊙ ⊙ J1904+04∗ 15.75 0.0046 0.27 71.1 ··· J1810–2005∗ 15.01 0.0085 0.34 32.8 1.3×10- 19 J1453–58∗ 12.42 0.13 1.07 45.3 ··· J0621+1002 8.319 0.0271 0.540 28.9 <8×10- 20 J1022+1001 7.805 0.0833 0.872 16.5 4.2×10- 20 J2145–0750 6.839 0.0242 0.515 16.1 2.9×10- 20 J1603–7202 6.309 0.00881 0.346 14.8 1.4×10- 20 J1157–5112∗∗ 3.507 0.2546 >1.20 43.6 <9×10- 19 J1232–6501∗ 1.863 0.0014 0.175 88.3 1.0×10- 18 J1435–60∗ 1.355 0.14 1.10 9.35 ··· B0655+64 1.029 0.0714 0.814 196 6.9×10- 19 J1756–5322∗∗ 0.453 0.0475 0.683 8.87 ··· ∗Newpulsar,ParkesMultibeamSurvey(Manchesteretal. 1999). ∗∗Newpulsar,Edwardsetal. (1999). NOTE.—MWobDs iscalculatedassumingMNS=1.4M⊙andi=60◦. TAURIS,VANDENHEUVEL&SAVONIJE 5 FIG.1.—TheevolutionofanX-raybinarywithM2=4.0M⊙andPorb=4.0days.TheleftpanelshowstheevolutionofPorbasafunctionofM2(timeisincreasing totheright).Thecentralpanelgivesthemass-lossrateofthedonorasafunctionofitsagesincetheZAMS.Therightpanelshowstheevolutionofthemass-losing donor(solidline)inanHR-diagram. Thedottedlinerepresentstheevolutionarytrackofasingle4.0M⊙star.Thelettersinthedifferentpanelscorrespondtoone anotheratagivenevolutionaryepoch–seetextforfurtherexplanation. FIG.2.—ThefinalPorbasafunctionofWDmassfordifferentBMSPs.Nexttoeachcurveisgiventheinitialmassofthedonorstar(theprogenitoroftheWD) usedinourevolutionarycalculations. ThefreeparameterineachcurveistheinitialPorb(attheonsetoftheRLO).Thecurvesingraycolorrepresenttheformaion ofBMSPswithheliumWD,whiletheblackcurvesareBMSPswithCOWD.TheopencirclesonsomeofthecurvesindicatethetransitionfromcaseAtoearly caseBRLOmasstransfer(i.e.whetherornotthedonorburnedhydrogeninthecoreattheonsetoftheRLO,Kippenhahn&Weigert1990).Thethinlinesshowthe calculatedparametersforsystemswhichevolvedthroughaCEandspiral-inphasescenarioassuminganefficiencyparameterofηCEλ=1.0(e.g. vandenHeuvel 1994).The12observedBMSPswitha“heavy”WDcompanionaremarkedwithastar,seeTable1. FIG.3.—Thedependenceoffinalorbitalperiod(top)andmassoftheWD(bottom),ontheinitialorbitalperiod,Porb. FIG. 4.—Thisplotillustratestheallowedparameterspace(whitearea)forproducingBMSPswithoutevolvingthroughaCEphase. IfM2>1.8M⊙ andthe donorhasadeepconvectiveenvelopeattheonsetofmasstransfer(i.e.Porbislarge)thesystemwillevolveintoaCEandspiral-inphase.Thisisalsothecaseifthe initialperiodisveryshortandM2>1.8M⊙.Inthelattercasetheneutronstarmaycollapseintoablackhole. 6 FORMATIONOFMILLISECONDPULSARSWITHHEAVYWHITEDWARFCOMPANIONS FIG.1.— TAURIS,VANDENHEUVEL&SAVONIJE 7 FIG.2.— 8 FORMATIONOFMILLISECONDPULSARSWITHHEAVYWHITEDWARFCOMPANIONS FIG.3.— TAURIS,VANDENHEUVEL&SAVONIJE 9 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)O(cid:0)(cid:1)-N(cid:0)(cid:1)e(cid:0)(cid:1)-M(cid:0)(cid:1)g(cid:0)(cid:1)(cid:0)(cid:1) 0 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) WD 0 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 0 1 Common Envelope CO WD & spiral-in ) s CO WD y 0 a 0 case C RLO d 1 ( case B RLO b r o P He WD 0 1 l a ti CO WD i n i converging sys. 1 He WD / coalescense BH H-deg. 1 2 3 4 5 6 7 M (M ) 2 FIG.4.—