ebook img

Formation of massive seed black holes by direct collapse in the early universe PDF

127 Pages·2014·2.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Formation of massive seed black holes by direct collapse in the early universe

Formation of massive seed black holes by direct collapse in the early Universe Bhaskar Agarwal Mu¨nchen 2013 Formation of massive seed black holes by direct collapse in the early Universe Bhaskar Agarwal Dissertation an der Fakulta¨t fu¨r Physik der Ludwig–Maximilians–Universit¨at Mu¨nchen vorgelegt von Bhaskar Agarwal aus Udaipur, India Mu¨nchen, den 16 September 2013 Erstgutachter: Dr. Sadegh Khochfar Zweitgutachter: Prof. Andreas Burkert Tag der mu¨ndlichen Pru¨fung: 6 December 2013 v Dedicated to my fianc´ee, Sonam. vi Contents Zusammenfassung xiii Abstract xv 1 Explaining the first supermassive black holes 1 2 Cosmic dawn 3 2.1 Cosmological framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Density perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Growth of perturbations . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 The first stars and galaxies . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Seeds of the quasars at z > 6 . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Stellar seeds of quasars . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Direct collapse seeds of quasars . . . . . . . . . . . . . . . . . . . . 19 3 Conditions for direct collapse 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 The N-body simulation . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Star formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.3 Impact of LW radiation on star formation and direct collapse . . . . 31 3.2.4 J calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 LW 3.2.5 Escape fraction of LW radiation and reionization feedback . . . . . 36 3.2.6 Model normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 The LW intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 Sources responsible for J > J . . . . . . . . . . . . . . . . . . . . 42 crit 3.3.3 Abundance and growth of DCBHs . . . . . . . . . . . . . . . . . . . 43 3.3.4 DCBH host haloes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.5 Efficiency of DCBH formation . . . . . . . . . . . . . . . . . . . . . 50 3.3.6 Reionisation Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Observability of the stellar seeds of direct collapse black holes . . . . . . . 53 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 viii Contents 4 Unravelling obese black holes in the first galaxies 59 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.1 DCBH forming haloes . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.3 Growth of a DCBH . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.1 Observational predictions . . . . . . . . . . . . . . . . . . . . . . . 70 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Direct collapse black hole candidates in FiBY 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1 FiBY Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.1 Identifying the DC sites . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.2 The environment of DCBHs . . . . . . . . . . . . . . . . . . . . . . 81 5.3.3 Galaxies producing J . . . . . . . . . . . . . . . . . . . . . . . . 86 crit 5.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Outlook 89 A Mass function and distance analysis 91 A.1 Details of Methodology: Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 91 A.1.1 Mass Function at z = 6 . . . . . . . . . . . . . . . . . . . . . . . . . 91 A.1.2 Selection of LW sources . . . . . . . . . . . . . . . . . . . . . . . . 91 Acknowledgements 104 List of Figures 2.1 The first galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Cooling function for hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Gas composition of the early Universe . . . . . . . . . . . . . . . . . . . . . 12 2.4 Density vs. temperature of gas under collapse . . . . . . . . . . . . . . . . 13 2.5 Accretion rate for a Pop III proto–stellar core . . . . . . . . . . . . . . . . 14 2.6 Accretion onto seed BHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Reaction speed vs. density for H dissociation . . . . . . . . . . . . . . . . 20 2 3.1 Critical mass for Pop III star formation . . . . . . . . . . . . . . . . . . . . 31 3.2 Lyman–Werner emission from Pop II stars . . . . . . . . . . . . . . . . . . 33 3.3 The star formation rate mass function . . . . . . . . . . . . . . . . . . . . 35 3.4 Star formation rate densities . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Mean LW background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6 LW radiation evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.7 The distribution of J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 local 3.8 Formation rate density of DCBH sites . . . . . . . . . . . . . . . . . . . . . 44 3.9 DCBH mass function and cumulative mass density for the fiducial case . . 45 3.10 The correlation function ξ . . . . . . . . . . . . . . . . . . . . . . . . . 48 total 3.11 Age distribution of the DCBH host haloes . . . . . . . . . . . . . . . . . . 49 3.12 Efficiency of DCBH site formation . . . . . . . . . . . . . . . . . . . . . . . 50 3.13 DCBH mass function and cumulative mass density for reionisation case . . 52 3.14 Supermassive stellar progenitors of DCBHs . . . . . . . . . . . . . . . . . . 54 4.1 Temperature–spin distribution of DC haloes . . . . . . . . . . . . . . . . . 62 4.2 M –M relation for OBGs . . . . . . . . . . . . . . . . . . . . . . . . . 64 BH bulge 4.3 Observability of OBGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Size versus magnitude relation of OBGs. . . . . . . . . . . . . . . . . . . . 69 5.1 Evolution of LW radiation in DC3 . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Evolution of LW radiation in DC5 . . . . . . . . . . . . . . . . . . . . . . . 80 5.3 Merger tree for DC candidate haloes. . . . . . . . . . . . . . . . . . . . . . 82 5.4 LW radiation and metallicity for DC0’s environment . . . . . . . . . . . . . 83 5.5 LW radiation and metallicity for DC2’s environment . . . . . . . . . . . . . 83 x List of Figures 5.6 LW radiation and metallicity for DC3’s environment . . . . . . . . . . . . . 84 5.7 Galaxies in the neighbourhood of the DC candidates . . . . . . . . . . . . 85 A.1 The mass function of haloes at z = 6. . . . . . . . . . . . . . . . . . . . . . 92 A.2 Lightcone diagram for the selection of LW sources . . . . . . . . . . . . . . 93 A.3 Infinite Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Description:
Bhaskar Agarwal. München Bhaskar Agarwal. Dissertation .. was one of the major predictions of the big bang theory (Dicke et al., 1965), and the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.