ebook img

Formation Control of Autonomous Aerial Vehicles PDF

135 Pages·2013·2.56 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Formation Control of Autonomous Aerial Vehicles

Department of Control Engineering and Information Technology Budapest University of Technology and Economics Formation Control of Autonomous Aerial Vehicles PhD Thesis Autono´m l´egi ja´rmu˝vek forma´cio´szaba´lyoza´sa PhD ´ertekez´es Gergely Regula Supervisor: Prof. emer. Dr. B´ela Lantos Department of Control Engineering and Information Technology Budapest University of Technology and Economics 10 September 2013 i Nyilatkozat ¨on´all´o munk´ar´ol, hivatkoz´asok ´atv´etel´ero˝l Alul´ırott Regula Gergely kijelentem, hogy doktori ´ertekez´esem magam k´esz´ıtettem ´es abbancsakamegadottforr´asokathaszn´altamfel. Mindenolyanr´eszt, amelyet szo´szerint, vagy azonos tartalomban, de ´atfogalmazva ma´s forr´asbo´l a´tvettem, egy´ertelmu˝en, a forra´s megada´sa´val megjel¨oltem. Budapest, 2013. szeptember 10. Regula Gergely ala´´ıra´s Nyilatkozat nyilv´anoss´agra hozatalro´l Alul´ırott Regula Gergely hozz´aj´arulok a doktori ´ertekez´esem interneten t¨ort´eno˝ nyil- va´noss´agra hozatal´ahoz az ala´bbi form´aban: korl´atoz´as n´elku¨l, • el´erheto˝s´eg csak magyarorsz´agi c´ımro˝l, • el´erheto˝s´eg a fokozat oda´ıt´el´es´et ko¨veto˝en 2 ´ev mu´lva, korl´atoz´as n´elku¨l, • el´erheto˝s´eg a fokozat oda´ıt´el´es´et ko¨veto˝en 2 ´ev mu´lva, csak magyarorsza´gi c´ımro˝l. • Budapest, 2013. szeptember 10. Regula Gergely ala´´ıra´s Nyilatkozat az ´ertekez´es benyu´jt´as´ar´ol Alul´ırott Regula Gergely kijelentem, hogy a doktori ´ertekez´esem kora´bban ma´s int´ez- m´enybe nem nyu´jtottam be ´es azt nem utas´ıtott´ak el. Budapest, 2013. szeptember 10. Regula Gergely ala´´ıra´s ii Ko¨szo¨netnyilv´an´ıt´as Ezu´ton szeretn´em megk¨osz¨onni t´emavezeto˝m, Lantos B´ela t´amogata´sa´t, aki az egyetemi tanulma´nyaim utolso´ k´et ´eve ´es a doktori tanulma´nyaim ¨ot ´eve alatt mindig rendelkez´e- semre ´allt, lelkiismeretesen seg´ıtette a munk´amat ir´anymutat´assal ´es rengeteg nyomtatott anyaggal. Ko¨sz¨onettel tartozom Bokor J´ozsef tana´r u´rnak, az MTA rendes tagja´nak, ami´ert az elmu´lt¨ot´evbenazMTA SZTAKIRendszer-´esIr´any´ıt´aselm´eleti Kutato´laborat´orium´aban stabil helyet biztos´ıtott sza´momra, valamint lehet˝os´eget adott, hogy bekapcsolo´djak a laborban folyo´ kutat´asokba. Szeretn´em megk¨osz¨onni tova´bba´ a laborban dolgozo´ kolleg´aimnak, hogy a kutata´s sor´an rengeteg seg´ıts´eget nyu´jtottak ´es j´o hangulatu´ ko¨rnyezetet teremtettek. Ku¨lo¨n sze- retn´em kiemelni Soumelidis Alexandros, Bakos A´da´m ´es Go˝zse Istva´n seg´ıts´eg´et, akik a kutat´as sor´an rengeteg seg´ıts´eget nyu´jtottak, ak´ar elm´eleti, ak´ar pedig gyakorlati probl´e- ma meru¨lt fel. Ezen k´ıvu¨l P´eni Tam´asnak szeretn´em megk¨osz¨onni a form´aci´oir´any´ıta´sban ´es a folyamat lez´ara´sa´hoz kapcsolo´d´o feladatokban nyu´jtott seg´ıts´eg´et. Szeretn´em megk¨osz¨onni a BME IIT munkata´rsainak a kutata´s sora´n nyu´jtott seg´ıts´e- get. Szeretn´ek ku¨lo¨nko¨sz¨onetet mondaniKisLa´szlo´nak, akit˝olan´egyrotoroshelikopterrel kapcsolatban sza´mos hasznos ¨otletet kaptam. Ezen k´ıvu¨l Kiss B´alintnak is ko¨szo¨nettel tartozom, aki az oktat´as sor´an felmeru¨lo˝ ¨osszes k´erd´esben sz´ıvesen nyu´jtott seg´ıts´eget. A munk´am szorosan kapcsolo´dik az OTKA K71762 ,,Autono´m fo¨ldi, l´egi ´es v´ızi ro- botok korszeru˝ ir´any´ıt´aselm´elete ´es mesters´eges intelligencia eszko¨zei” projekt keret´eben 2008 ´es 2012 ko¨zo¨tt v´egzett kutat´asokhoz, a t´amogata´s´ert ezu´ton is szeretn´em kifejezni ko¨sz¨onetemet. A kutat´as tova´bba´ a Prof. Vajk Istva´n (BME Automatiza´la´si ´es Alkalmazott In- formatikai Tansz´ek) ´altal ir´any´ıtott MTA–BME Ir´any´ıt´astechnikai Kutato´csoportja´nak t´amogat´asa´val valo´sult meg, amelynek keretein belu¨l 2012 elej´eto˝l v´egezhettem feladatai- mat. V´egezetu¨l szeretn´em a csala´domnak ´es a bara´taimnak a ta´mogata´st ´es biztat´ast meg- ko¨sz¨onni, akik az ¨osszes hull´amvo¨lgyo¨n ´atseg´ıtettek, nyugodt ko¨ru¨lm´enyeket biztos´ıtottak ´es vida´m pillanatokat szereztek nekem. iii Acknowledgements I hereby wish to thank the support of my supervisor B´ela Lantos who has always been available for guiding me throughout the last two years of my undergraduate and all the five years of doctoral studies. He provided me with plenty of valuable and thorough comments and useful printed materials. I would like to thank Prof. J´ozsef Bokor, full member of HAS, for providing me a place at the Systems and Control Lab of MTA SZTAKI during the last five years, allowing me to participate in the research carried out in the lab. I further wish to thank my colleagues in the lab for providing me with help and vivacious environment. I would like to give special thanks to Alexandros Soumelidis, ´ Ada´m Bakos and Istva´n Go˝zse for their valuable theoretical and practical help. I wish to further thank Tam´as P´eni for his guidance in formation control and help in finishing my doctoral process. I wish to thank the staff of BME IIT for their help throughout my research. I would like to thank La´szlo´ Kis for the numerous constructive ideas regarding the quadrotor helicopter. Furthermore, IwishtothankB´alintKissforhishelpandseamlessorganisation of all my teaching related duties. The research was supported by the Hungarian National Research Program “Advanced Control Theory and Artificial Intelligence Techniques of Autonomous Ground, Aerial and Marine Robots” under grant No. OTKA K71762. I hereby wish to thank the program for the support. Since the beginning of 2012, the research has further been funded by the MTA–BME Control Engineering Research Group, led by Prof. Istva´n Vajk, head of the Department of Automation and Applied Informatics at BME. At last, I wish to thank my family and friends for the support and encouragement, for helping me through all the difficult moments, for providing calm environment and cheerful moments. iv ¨ Osszefoglal´o Napjainkban az ember n´elku¨li l´egi j´armu˝vek (UAV-k), ill. ember n´elku¨li repu¨lo˝ rendsze- rek (UAS-ek) egyre inka´bb a figyelem ko¨z´eppont-ja´ba keru¨lnek, r´aada´sul a mindennapi ´eletben is egyre t¨obb helyen k´ıv´anj´ak alkalmazni ˝oket. Ezek a j´armu˝vek sza´mos kih´ıv´ast jelent˝o feladatot hat´ekonyan k´epesek elv´egezni, ak´ar ¨onmagukban, aka´r hasonlo´ egye- dekbo˝l csoportot alkotva. A l´egi j´armu˝vek teru¨le-t´en azonban a mai napig sza´mos k´erd´es megv´alaszola´sa va´rat mag´ara, ami r´eszben az alkalmaz´asok soksz´ınu˝s´eg´enek ko¨szo¨nhet˝o. Jelen munka belt´eri auton´om j´armu˝vek ´es j´armu˝csoportok ir´any´ıta´si k´erd´eseivel, ill. az ehhez kapcsolo´d´o m´er´esi ´es ´allapotbecsl´esi feladatokkal foglalkozik. A kutat´as kereteit a Budapesti Mu˝szaki ´es Gazdas´agtudom´anyi Egyetem Ir´any´ıta´s- technika ´es Informatika Tansz´eke (BME IIT) ´es az MTA SZTAKI Rendszer- ´es Ir´any´ıta´s- elm´eleti Kutat´olaborat´oriuma ´altal ko¨zo¨sen kezdem´enyezett n´egyrotoros helikopter pro- jektjebiztos´ıtotta. Aprojektkereteinbelu¨lsokr´etu˝ kutat´asfolyik, amelyekko¨zo¨ttszerepel a szenzorrendszer fejleszt´ese [28], bel- ´es ku¨lt´eri naviga´ci´o ´es ir´any´ıta´s [28,58], valamint a kooperat´ıv ir´any´ıt´as. A projekt sor´an t¨obb olyan eredm´eny szu¨letett, amely egy´eb j´armu˝vek eset´en is alkalmazhat´o. Jelen disszert´aci´o a belt´eri j´armu˝egyu¨ttes biztons´agos ir´any´ıt´asa teru¨let´en el´ert eredm´enyeket mutatja be. Az ´ertekez´es r´esz´et k´epezik tova´bba´ a kutat´as sor´an felmeru¨lo˝ j´arul´ekos feladatok megold´asa´hoz kapcsolo´d´o eredm´enyek is. Ezek a feladatok az egyes j´armu˝vek ir´any´ıt´asa´ra alkalmas algoritmusok, valamint belt´eri j´armu˝naviga´ci´ot t´amogat´o algoritmusok kidolgoz´asa ko¨r´e csoportosulnak. A disszert´aci´oban megjeleno˝ eredm´enyek a fentiek szerint h´arom nagyobb t´emak¨orbe sorolhato´k. A kutat´as kezdeti szakasz´anak f˝o feladata az egyes UAV-k modellez´ese ´es az eredm´enyu¨l ad´od´o alulaktu´alt ´es instabil nemline´aris rendszert stabiliz´alni k´epes ira´ny´ı- t´asi algoritmusainak kidolgoz´asa volt. J´arul´ekos probl´emak´ent jelentkezett, hogy a sza- b´alyoza´shoz szu¨ks´eges mennyis´egek n´emelyike nem ´all rendelkez´esre megb´ızhato´ m´er´esek form´aj´aban. Ilyen esetekben ´allapotbecslo˝ rendszerek teszik teljess´e a fed´elzati ira´ny´ıta´si rendszert. A 2. fejezet t´argyalja az ehhez a k´erd´esko¨rho¨z kapcsolo´d´o eredm´enyeket. A ko¨vetkezo˝ fejezet t´em´aja a j´armu˝naviga´ci´o. Prec´ız man˝overek v´egrehajt´asa´hoz elen- gedhetetlen, hogy megb´ızhato´ abszolu´t poz´ıcio´- ´es orient´aco´m´er´esek a´lljanak rendelkez´es- re. Tipikusan a j´armu˝vekre r¨ogz´ıtett szenzorok ilyen m´er´eseket nem k´epesek szolga´ltatni, ez´ert ku¨ls˝o poziciona´lo´ rendszereket alkalmaznak. A projekt sor´an jelent˝os hangu´lyt ka- pott mind ku¨lt´eri, mind pedig belt´eri ko¨rnyezetben alkalmazhat´o u´j naviga´ci´os algoritmu- sokkidolgoz´asa. Jelendisszert´aci´oezekko¨zu¨labelt´erinaviga´ci´osfeladatokrao¨sszpontos´ıt. Az MTA SZTAKI-ban egyedi m´er´esi elven alapul´o belt´eri poziciona´lo´ rendszer fejleszt´ese v folyik, amelynek jelent˝os el˝onye, hogy va´ltozatos f´enyviszonyok ko¨zo¨tt k´epes mu˝ko¨dni, emellett egyszeru˝en igaz´ıthato´ ku¨lo¨nb¨ozo˝ m´eretu˝ terek lefed´es´ere. A 3. fejezet k´et fo˝bb k´erd´est ´erint: a rendszer mu˝k¨od´es´ehez elengedhetetlen kalibr´aci´ot, valamint az algoritmu- sokat, amelyek seg´ıts´eg´evel a nyers m´er´esi adatok alapj´an meghat´arozhatjuk egy ja´rmu˝ t´erbeli poz´ıcio´j´at ´es orient´aci´oj´at. A disszert´aci´o z´aro´ r´esze kiterjeszti a vizsg´alatot j´armu˝egyu¨ttes ira´ny´ıta´si k´erd´esei- re. Alapveto˝ fontoss´agu´, hogy az egyes j´armu˝vek stabilit´asa´b´ol nem ko¨vetkezik, hogy az ezekb˝ol ´all´o egyu¨ttes is stabil rendszerk´ent viselkedik. Ennek kapcsa´n azt vizsg´aljuk, hogyan k´epes behat´arolt t´erben egy nagy m´eretu˝ j´armu˝egyu¨ttes egy feladatot o¨sszehan- goltan hat´ekonyan v´egrehajtani. A kitu˝zo¨tt c´el, hogyan rendez˝odhetnek a´t egy kiindul´asi form´aci´ob´ol egyc´elform´aci´oba u´gy, hogy ek¨ozben garant´alt a biztons´agos mu˝ko¨d´es, vagyis hogysem egym´asban, sem pedig ako¨rnyezetu¨kben nem tesznek ka´rt. Az ezzel kapcsolatos el´ert eredm´enyeket foglalja ¨ossze a 4. fejezet. vi Abstract Recently, unmanned aerial vehicles (UAVs) and unmanned aircraft systems (UASs) have gained significant attention and their integration to everyday life is one of the most act- ively investigated problem in numerous countries. These vehicles can perform various challenging tasks efficiently, either alone or in cooperation with other similar vehicles. However, numerous open questions exist in this field of research due to the versatility of applications and the emerging problems. This work focuses on control related prob- lems that include single vehicles and vehicle groups in indoor environment, while state measurement and estimation are also of importance. The research has been made available by the quadrotor helicopter research project initiated by the Department of Control Engineering and Information Technology of the Budapest University of Technology and Economics (BME IIT) and the Systems and Con- trol Lab of the Institute for Computer Science and Control of the Hungarian Academy of Sciences (MTA SZTAKI). The research involves several directions including sensor analysis and design [28], indoor and outdoor navigation and control algorithm develop- ment [28,58] and cooperative control. Many of the results of this research are not strictly connected to quadrotor helicopters. This thesis presents the results related to safe control of indoor vehicle groups. Additionally, results related to the problems having emerged during the research are included in the thesis. These results are connected to the de- velopment of algorithms for individual quadrotor helicopter control and for navigation of indoor vehicles. The results presented in this thesis are therefore grouped into three main parts. The first step during the research was modelling the dynamics of a single quadrotor UAV and designing a powerful stabilising controller for this underactuated and unstable nonlinear system. An emerging problem is that the proposed method require certain signals that cannot be measured by on-board or external sensors reliably. In control applications, this is typically solved by state estimators that make the on-board control system complete. These topics are covered in Chapter 2. The second main part deals with navigation questions. For accurate motion, reli- able absolute position and attitude measurements are required, which are generally not provided by on-board sensors. During the whole project, both indoor and outdoor navig- ation have been investigated. In this work, focus will only be on indoor position and atti- tude estimation. A novel indoor positioning system is being developed at MTA SZTAKI, which can operate in various light conditions and is scalable in order to cover different vii sizes of space. Two important problems shall be dealt with in Chapter 3, which are the necessary calibration process and the position and attitude reconstruction algorithms, performing which accurate measurements can be provided. In the last main part, we extend the investigation to a group of vehicles. This is fundamentally different from single vehicle control since the stability of a single vehicle doesnot guarantee the same atthe grouplevel. Here we investigate how a largenumber of vehicles can perform missions together efficiently. The main task will be how a formation change manoeuvre can be performed, guaranteeing collision-free motion and at the same time certain robustness measures. The findings in this area is the topic of Chapter 4. Contents Page List of Figures xi List of Tables xii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution and Structure of the Thesis . . . . . . . . . . . . . . . . . . . 2 1.3 Applied Hardware and Software Tools . . . . . . . . . . . . . . . . . . . . . 4 2 Control of a Single Quadrotor Helicopter 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Dynamic Modelling of a Quadrotor Helicopter . . . . . . . . . . . . . . . . 11 2.3.1 Simplified Dynamic Equations . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Rotor Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Nonlinear Control of Quadrotor Helicopters . . . . . . . . . . . . . . . . . 14 2.4.1 Applying a Backstepping Algorithm to the Helicopter . . . . . . . . 15 2.4.2 Extended Kalman Filtering Based State Estimation . . . . . . . . . 21 2.5 Robust Stabilisation of Quadrotor Helicopters . . . . . . . . . . . . . . . . 26 2.5.1 Linearisation and Uncertainty Modelling . . . . . . . . . . . . . . . 27 2.5.2 Robust Controller Design . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Evaluation of the Proposed Control Methods . . . . . . . . . . . . . . . . . 37 2.6.1 Evaluation of the Nonlinear Controller . . . . . . . . . . . . . . . . 40 2.6.2 Evaluation of the Robust Controller . . . . . . . . . . . . . . . . . . 43 2.7 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Novel Marker Detection Based External State Estimation 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Commonly Applied Estimation Methods . . . . . . . . . . . . . . . . . . . 49 viii Contents ix 3.3 A Novel Indoor Positioning System . . . . . . . . . . . . . . . . . . . . . . 51 3.3.1 Operating Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4 Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1 Calibration Object Reconstruction . . . . . . . . . . . . . . . . . . 55 3.5 Spatial Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5.1 Estimating a Single Marker’s Position . . . . . . . . . . . . . . . . . 58 3.5.2 Attitude and Position Estimation . . . . . . . . . . . . . . . . . . . 63 3.6 Implementation and Performance Evaluation . . . . . . . . . . . . . . . . . 68 3.7 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Robust Formation Control and Safe Formation Change 74 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Overview of Related Research . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.1 System Interconnection Structure . . . . . . . . . . . . . . . . . . . 75 4.2.2 Commonly Applied Control Design Methods . . . . . . . . . . . . . 77 4.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.1 Laplacian Matrix and Communication Topology . . . . . . . . . . . 78 4.3.2 Closed Loop Formation Stability . . . . . . . . . . . . . . . . . . . 79 4.4 Safe Formation Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.1 Path Generating Algorithm . . . . . . . . . . . . . . . . . . . . . . 83 4.4.2 Generating Suitable Correction Routes . . . . . . . . . . . . . . . . 91 4.4.3 Unifying the Distance Measure . . . . . . . . . . . . . . . . . . . . 93 4.4.4 Clique Search in ( ) . . . . . . . . . . . . . . . . . . . . . . . . . 96 d A G 4.4.5 Proofs of Theorems 4.4.1 and 4.4.2 . . . . . . . . . . . . . . . . . . 97 4.5 Refinements and Extensions to the Path Generating Algorithm . . . . . . . 99 4.5.1 Performing Correction Routes in One Step . . . . . . . . . . . . . . 99 4.5.2 Obstacle Avoidance and the Improved Algorithm . . . . . . . . . . 102 4.6 Practical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.6.1 Simple Formation Change Scenario . . . . . . . . . . . . . . . . . . 103 4.6.2 Obstacle Avoidance Manoeuvre . . . . . . . . . . . . . . . . . . . . 108 4.7 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5 Applications and Future Development Directions 111 Own Publications 113 References 122

Description:
Furthermore, I wish to thank Bálint Kiss for his help and seamless organisation . 4 Robust Formation Control and Safe Formation Change. 74.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.