ebook img

Formal reduction and integration of systems of nonlinear differential equations PDF

165 Pages·2000·0.885 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Formal reduction and integration of systems of nonlinear differential equations

THE(cid:18)SE pr(cid:19)esent(cid:19)ee par G(cid:19)erard Eichenmu(cid:127)ller pour obtenir le grade de DOCTEUR de l’Universit(cid:19)e Joseph Fourier (Arr^et(cid:19)e minist(cid:19)eriel du 30 mars 1992) (sp(cid:19)ecialit(cid:19)e : Math(cid:19)ematiques Appliqu(cid:19)ees) Reduction et Int(cid:19)egration symbolique des syst(cid:18)emes d’(cid:19)equations di(cid:11)(cid:19)erentielles non-lin(cid:19)eaires Formal reduction and integration of systems of nonlinear di(cid:11)erential equations Date de soutenance : le 11 d(cid:19)ecembre 2000 Composition du Jury : L: BRENIG Universit(cid:19)e Libre de Bruxelles (pr(cid:19)esident et rapporteur) G: CHEN Universit(cid:19)e de Lille (rapporteur) J: DELLA DORA Institut National Polytechnique de Grenoble (examinateur) J: THOMANN Universit(cid:19)e Louis Pasteur de Strassbourg (examinateur) E: TOURNIER Universit(cid:19)e Joseph Fourier (examinateur) Th(cid:18)ese pr(cid:19)epar(cid:19)ee au sein du Laboratoire LMC-IMAG et (cid:12)nanc(cid:19)ee par la Gottlieb Daimler- und Karl Benz-Stiftung Remerciements D’abord je voudrais remercier Evelyne Tournier qui a accept(cid:19)e de diriger cette th(cid:18)ese et qui m’a fait d(cid:19)ecouvrir le calcul formel. Je la remercie (cid:19)egalement pour m’avoir permis de participer au projet europ(cid:19)een CATHODE. Jetiensa(cid:18)remerciermonco-directeurdeth(cid:18)eseJeanDellaDorad’avoiraccept(cid:19)ed’assurer l’encadrement de ce travail. Je lui suis tr(cid:18)es reconnaissant pour les orientations qu’il a sugg(cid:19)er(cid:19)ees et pour m’avoir fait d(cid:19)ecouvrir les syst(cid:18)emes dynamiques. Je suis particuli(cid:18)erement heureux que L(cid:19)eon Brenig ait accept(cid:19)e d’^etre rapporteur de ma th(cid:18)ese et pr(cid:19)esidentdujury. JeleremercieainsiqueGuotingChen,rapporteuretsp(cid:19)ecialiste des formes normales, de leur lecture tr(cid:18)es attentive et de leurs nombreuses suggestions. Je remercie (cid:19)egalement Jean Thomann qui a accept(cid:19)e d’examiner ma th(cid:18)ese. Sans le support (cid:12)nancier de la Gottlieb Daimler- und Karl Benz-Stiftung cette th(cid:18)ese n’aurait pas (cid:19)et(cid:19)e possible. En particulier Petra Jung, Horst Niensta(cid:127)dt et Gisbert Freiherr zu Putlitz m’ont beucoup aid(cid:19)e. Qu’ils en soient remerci(cid:19)es. Mes remerciements vont aussi (cid:18)a tous mes coll(cid:18)egues de l’(cid:19)equipe MOSA(cid:127)IC et aux an- ciens coll(cid:18)egues de l’(cid:19)equipe Calcul Formel avec lesquels j’ai eu le plaisir de collaborer ou bien simplement de passer d’agr(cid:19)eables moments au cours de ces trois ann(cid:19)ees. Il y a les membres permanents Franc(cid:24)oise Jung, Claire Di Crescenzo, Claudine Cha(cid:11)y, Moulay Barkatou, Val(cid:19)erie Perrier, Mich(cid:18)ele Benois, Rodney Coleman, Dominique Duval, Marie- Laurence Mazure et Gilles Villard et les non-permanents Mihaela, Voichita, Aude, Fred, Claude-Pierre, Olivier, Ines, Yann, Josselin, Luc, Loic, Eckhard, Tes et Ren(cid:19)e. Je voudrais (cid:19)egalement remercier Sylvie, Sophie, Steph, Je(cid:11), Cyrilet tous mes amis, kayakistes ou pas. Parmislesnombreusespersonnesrencontr(cid:19)eesaucoursdemath(cid:18)ese,jevoudrais(cid:19)egalement remercier Jos(cid:19)e Cano, Fuensanta Aroca et Fouad Zinoun. En(cid:12)n je voudrais remercier Daniela et ma famille qui m’ont beaucoup soutenu et qui se r(cid:19)ejouissent avec moi de l’accomplissement de ce travail. 3 Contents Introduction 9 Introduction fran(cid:24)caise 17 Resum(cid:19)e par chapitre (en Franc(cid:24)ais) 19 1 Formal Solutions for Dynamical Systems 25 1.1 Flows, Vector Fields and Di(cid:11)erential Equations . . . . . . . . . . . . . . . . 25 1.2 Linearization of vector (cid:12)elds . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.3 Equivalence of vector (cid:12)elds . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4 Time transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 Convergence and Formal Solutions . . . . . . . . . . . . . . . . . . . . . . . 32 2 The Newton diagram 33 2.1 The support and the Newton diagram . . . . . . . . . . . . . . . . . . . . . 33 2.2 Power transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Power transformations as di(cid:11)eomorphisms . . . . . . . . . . . . . . . . . . . 36 n 2.3.1 Power transformations in R . . . . . . . . . . . . . . . . . . . . . . 37 n 2.3.2 Power transformations in C . . . . . . . . . . . . . . . . . . . . . . 39 2.4 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Normal Forms 43 3.1 The Poincar(cid:19)e-Dulac normal form . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 The Jordan form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Computation of normal forms by Poincar(cid:19)e Transformations . . . . . . . . . 46 3.3.1 The homological equation . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.2 The matrix representation of the homological operator . . . . . . . . 47 3.4 Computation of normal forms by Lie transformation . . . . . . . . . . . . . 48 3.4.1 De(cid:12)nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.2 Action on a vector (cid:12)eld . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 The (cid:13)ow of a non-singular vector (cid:12)eld . . . . . . . . . . . . . . . . . 51 3.4.4 Organization of the computations. . . . . . . . . . . . . . . . . . . . 52 3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5 6 Contents 4 Resolution of singularities by blowing-up 55 4.1 Two-dimensional polar blowing-up . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Quasi-homogeneous directional blowing up . . . . . . . . . . . . . . . . . . . 58 4.2.1 Quasi-homogeneous vector (cid:12)elds . . . . . . . . . . . . . . . . . . . . 59 4.2.2 The e(cid:11)ect on the Newton diagram . . . . . . . . . . . . . . . . . . . 60 4.2.3 Construction of blowing-ups via adjoint matrices . . . . . . . . . . . 62 4.2.4 The exceptional divisor . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Successive blowing-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Classi(cid:12)cation 69 6 Regular Points 73 7 Two dimensional elementary singular points 77 7.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Systems with real coeÆcients . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Two dimensional nonelementary singular points 85 8.1 The Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1.1 The Poincar(cid:19)e-Dulac Normal Form for Class Systems . . . . . . . . 86 V 8.1.2 The Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2 The Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.2.1 Reduction of the Singularity. . . . . . . . . . . . . . . . . . . . . . . 91 8.2.2 Subsectors and Recursion . . . . . . . . . . . . . . . . . . . . . . . . 94 9 Three- and higher-dimensional elementary singular points 99 9.1 Integration of n-dimensional normal forms for m=1 . . . . . . . . . . . . . 100 9.2 Integration of real n-dimensional normal forms for m=1 . . . . . . . . . . 102 9.3 Reduction of three-dimensional normal forms for m=2 . . . . . . . . . . . . 104 9.3.1 The Choice of the Matrix A . . . . . . . . . . . . . . . . . . . . . . . 104 9.3.2 The Classi(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.3.3 Real three-dimensional systems . . . . . . . . . . . . . . . . . . . . . 115 9.4 Reduction of n-dimensional normal forms for m>2 . . . . . . . . . . . . . 117 9.4.1 Conditions for the choice of the matrix A . . . . . . . . . . . . . . . 118 n 9.4.2 The resonant plane lies entirely within N . . . . . . . . . . . . . . . 119 n 9.4.3 The set M N contains m linearly independent vectors . . . . . . . 124 \ n 9.4.4 The set M N contains less than m linearly independent vectors . 125 \ 9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10 Three-dimensional nonelementary singular points 127 10.1 The vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 10.2 The edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.3 The faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.4 The sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.5 The virtual Newton diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.5.1 The construction of the virtual Newton diagram . . . . . . . . . . . 136 Contents 7 10.6 Examplesforthereductionofthree-dimensionalnilpotentsystemsbyblowing- ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.7 Higher-dimensional nonelementary singular points . . . . . . . . . . . . . . 139 11 The FRIDAY package 141 11.1 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11.2 Using the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 11.3 Introducing examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.3.1 Integration of n-dimensionalsystems inthe neighbourhoodof a reg- ular point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.3.2 Computation of n-dimensional normal forms for non-nilpotent sin- gular vector (cid:12)elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.3.3 Integration of two-dimensional elementary singular points . . . . . . 149 11.3.4 Integration of two-dimensional nonelementary singular points . . . . 150 11.3.5 Integration and Reduction of three-dimensionalelementary singular points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Conclusion 157 Conclusion fran(cid:24)caise 159 Bibliography 160 Introduction Dynamical systems are present everywhere in science. Many models of natural processes yield dynamical systems. A dynamical system is a system whose state changes with time. There exist two main types of dynamical systems: discrete dynamical systems that are representedbydi(cid:11)erenceequationsandcontinuousdynamicalsystemsthatarerepresented by di(cid:11)erential equations. Thestate of a system can be describedby a numberof variables that we willcentralize in the n-dimensional vector X =(x1; ::: ;xn). The variable t denotes time. We are inter- ested in continuous dynamical systems that can be described by a system of autonomous di(cid:11)erential equations X_ =F(X) (1) 1 n where F =(f1; ::: ;fn) is a vector. The components fi C(cid:21) (M;C ) are de(cid:12)ned on the 2 open convex subset M. The fact that we consider systems implies that n is greater than 1. In particular the cases n=2 and n=3 will be studied very closely. The solutions of dynamical systems are given by their (cid:13)ow that is denoted by (cid:8). The velocity of the (cid:13)ow is given by the vector (cid:12)eld F. In general the (cid:13)ow (cid:8) is approximated by numerical algorithms. But those methods are not very precise in the neighbourhood of singularities and they do not allow the study of systems containing parameters. On the other hand most di(cid:11)erential equations (even simple ones) have no explicit solution. Therefore in this thesis we will employ another approach proposed by H. Poincar(cid:19)e to solve this dilemma. The explicit analytic study of a di(cid:11)erential equation is replaced by qualitative studies. To study the qualitative behaviour of dynamical systems means to classify them into equivalence classes of similar behaviour. This classi(cid:12)cation is realized by local di(cid:11)eo- morphisms. That means that those studies are strictly local. They are only valid in the neighbourhoodofapointoranotherobject. Intwodimensionsandforsomehigherdimen- sional problems the results of those considerations can be used to approximate algebraic solutions. Dynamical systems described by equations as (1) often arise from modeling problems in science. The variable X denotes involved physical quantities that change with time. Those changes are described by a system of di(cid:11)erential equations. Example 1 (Planar Pendulum) Newton’s third law F =ma 9 10 Introduction x l mg Figure 1: Planar pendulum, see example 1. describes the behaviour of many physical systems. In absence of friction we (cid:12)nd the rela- tions F = mg sinx @(cid:0)2 a= @t2(lx) for a planar pendulum (see (cid:12)gure 1). The variable m denotes the mass of the pendulum , l its length and g the gravitational constant. As the acceleration a is the second derivative of displacement x this is a second order di(cid:11)erential equation g x(cid:127)+ sinx=0 l that can be rewritten as a (cid:12)rst order system x_ =y g y_ = lsin(x) (cid:26) (cid:0) in the variables x and the new variable y. Thisthesisissplitinto three parts. The (cid:12)rstpart introducessome maintoolsthat will beusedinthealgorithmsforthereductionoftwo- andhigher-dimensionalsystems. Those algorithms are described in the second part. The third part of this thesis deals with the implementation of the algorithms and the programming aspects. We will also give some examples for the use of the Maple package that has been implemented by the author. We will give a more precise overview for each chapter of this thesis. First part: The integration of dynamical systems Formal solutions for dynamical systems This chapter introduces some basic notations and de(cid:12)nitions for dynamical systems as they can be found in many references on dynamical systems (see for example the works

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.