ebook img

Formal Geometry and Bordism Operations PDF

421 Pages·2019·5.125 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Formal Geometry and Bordism Operations

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 177 EditorialBoard B. BOLLOBA´S, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO FORMALGEOMETRYANDBORDISMOPERATIONS Thistextorganizesarangeofresultsinchromatichomotopytheory,runningasingle thread through theorems in bordism and a detailed understanding of the moduli of formal groups. It emphasizes the naturally occurring algebro-geometric models that presage the topological results,taking the reader through a pedagogical development of the field. In addition to forming the backbone of the stable homotopy category, these ideas have found application in other fields: the daughter subject “elliptic cohomology” abuts mathematical physics, manifold geometry, topological analysis, andtherepresentationtheoryofloopgroups.Thecommonlanguageemployedwhen discussingthesesubjectsshowcasestheirunityandguidesthereaderbreezilyfromone domain to the next, ultimately culminating in the construction of Witten’s genus for Stringmanifolds. This text is an expansion of a set of lecture notes for a topics course delivered at HarvardUniversityduringthespringtermof2016. Eric Peterson works in quantum compilation for near-term supremacy hardware at RigettiComputinginBerkeley,California.HewaspreviouslyaBenjaminPeirceFellow atHarvardUniversity. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard: B.Bolloba´s,W.Fulton,F.Kirwan,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslisting,visitwww.cambridge.org/mathematics. Alreadypublished 140 R.Pemantle&M.C.WilsonAnalyticCombinatoricsinSeveralVariables 141 B.Branner&N.FagellaQuasiconformalSurgeryinHolomorphicDynamics 142 R.M.DudleyUniformCentralLimitTheorems(2ndEdition) 143 T.LeinsterBasicCategoryTheory 144 I.Arzhantsev,U.Derenthal,J.Hausen&A.LafaceCoxRings 145 M.VianaLecturesonLyapunovExponents 146 J.-H.Evertse&K.Gyo˝ryUnitEquationsinDiophantineNumberTheory 147 A.PrasadRepresentationTheory 148 S.R.Garcia,J.Mashreghi&W.T.RossIntroductiontoModelSpacesandTheirOperators 149 C.Godsil&K.MeagherErdo˝s–Ko–RadoTheorems:AlgebraicApproaches 150 P.MattilaFourierAnalysisandHausdorffDimension 151 M.Viana&K.OliveiraFoundationsofErgodicTheory 152 V.I.Paulsen&M.RaghupathiAnIntroductiontotheTheoryofReproducing KernelHilbertSpaces 153 R.Beals&R.WongSpecialFunctionsandOrthogonalPolynomials 154 V.JurdjevicOptimalControlandGeometry:IntegrableSystems 155 G.PisierMartingalesinBanachSpaces 156 C.T.C.WallDifferentialTopology 157 J.C.Robinson,J.L.Rodrigo&W.SadowskiTheThree-Dimensional Navier–StokesEquations 158 D.HuybrechtsLecturesonK3Surfaces 159 H.Matsumoto&S.TaniguchiStochasticAnalysis 160 A.Borodin&G.OlshanskiRepresentationsoftheInfiniteSymmetricGroup 161 P.WebbFiniteGroupRepresentationsforthePureMathematician 162 C.J.Bishop&Y.PeresFractalsinProbabilityandAnalysis 163 A.BovierGaussianProcessesonTrees 164 P.SchneiderGaloisRepresentationsand(ϕ,(cid:3))-Modules 165 P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology(2ndEdition) 166 D.Li&H.QueffelecIntroductiontoBanachSpaces,I 167 D.Li&H.QueffelecIntroductiontoBanachSpaces,II 168 J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodMappingsandPeriodDomains(2ndEdition) 169 J.M.LandsbergGeometryandComplexityTheory 170 J.S.MilneAlgebraicGroups 171 J.Gough&J.KupschQuantumFieldsandProcesses 172 T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteHarmonicAnalysis 173 P.GarrettModernAnalysisofAutomorphicFormsbyExample,I 174 P.GarrettModernAnalysisofAutomorphicFormsbyExample,II 175 G.NavarroCharacterTheoryandtheMcKayConjecture 176 P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinSeriesandAutomorphic Representations 177 E.PetersonFormalGeometryandBordismOperators 178 A.OgusLecturesonLogarithmicAlgebraicGeometry 179 N.NikolskiHardySpaces Formal Geometry and Bordism Operations ERIC PETERSON HarvardUniversity,Massachusetts UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108428033 DOI:10.1017/9781108552165 ©EricPeterson2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-Publicationdata Names:Peterson,Eric,1987-author. Title:Formalgeometryandbordismoperations/EricPeterson(RigettiComputing, Berkeley,California). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,[2019]| Series:Cambridgestudiesinadvancedmathematics;177 Identifiers:LCCN2018034169|ISBN9781108428033(hardback:alk.paper) Subjects:LCSH:Topologicalmanifolds.|Manifolds(Mathematics)|Geometry, Algebraic.|Boundaryvalueproblems. Classification:LCCQA613.2.P482019|DDC514/.2–dc23 LCrecordavailableathttps://lccn.loc.gov/2018034169 ISBN978-1-108-42803-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Letusbegladwedon’tworkinalgebraicgeometry. J.F.Adams[Ada78b,Section2.1] Contents ForewordbyMatthewAndo pageix Preface xi Introduction 1 Conventions 7 1 UnorientedBordism 9 1.1 ThomSpectraandtheThomIsomorphism 10 1.2 CohomologyRingsandAffineSchemes 16 1.3 TheSteenrodAlgebra 22 1.4 HopfAlgebraCohomology 31 1.5 TheUnorientedBordismRing 39 2 ComplexBordism 49 2.1 CalculusonFormalVarieties 51 2.2 DivisorsonFormalCurves 60 2.3 LineBundlesAssociatedtoThomSpectra 65 2.4 PowerOperationsforComplexBordism 73 2.5 ExplicitlyStabilizingCyclic MU–PowerOperations 83 2.6 TheComplexBordismRing 91 3 FiniteSpectra 97 3.1 DescentandtheContextofaSpectrum 99 3.2 TheStructureofM I:TheAffineCover 111 fg 3.3 TheStructureofM II:LargeScales 121 fg 3.4 TheStructureofM III:SmallScales 132 fg 3.5 NilpotenceandPeriodicityinFiniteSpectra 140 3.6 ChromaticFractureandConvergence 154 vii viii Contents 4 UnstableCooperations 165 4.1 UnstableContextsandtheSteenrodAlgebra 167 4.2 AlgebraicMixedUnstableCooperations 178 4.3 UnstableCooperationsforComplexBordism 188 4.4 DieudonnéModules 194 4.5 OrdinaryCooperationsforLandweberFlatTheories 203 4.6 CooperationsamongGeometricPointsonM 211 fg 5 Theσ-Orientation 219 5.1 CoalgebraicFormalSchemes 220 5.2 SpecialDivisorsandtheSpecialSplittingPrinciple 226 5.3 ChromaticAnalysisofBU[6,∞) 238 5.4 AnalysisofBU[6,∞)atInfiniteHeight 247 5.5 ModularFormsand MU[6,∞)-Manifolds 256 5.6 ChromaticSpinandStringOrientations 270 AppendixA PowerOperations 283 A.1 RationalChromaticPhenomena(NathanielStapleton) 285 A.2 OrientationsandPowerOperations 307 A.3 TheSpectrumofModularForms 322 A.4 OrientationsbyE Maps 333 ∞ AppendixB LooseEnds 349 B.1 HistoricalRetrospective(MichaelHopkins) 349 B.2 TheRoadAhead 352 References 379 Index 401 Preface Thisbookowesanincredibleamounttoanumberofincrediblepeople.Under- standingtheresearchprogramsummarizedherehasbeenoneoftheprimary pursuits–ifnottheprimarypursuit–ofmyyoungacademiccareer.Ithasbeen anunmistakableandenormousprivilegenotonlytobegrantedthetimeand freedomtolearnaboutthesebeautifulideas,butalsotolearndirectlyfromtheir progenitors.IoweverylargedebtstoMatthewAndo,MichaelHopkins,and NeilStrickland,foreachhavingshownmesuchindividualattentionandcare, aswellasforhavingworkedoutthetailofthislongstory.Matt,inparticular,is thepersonwhogotmeintohighermathematics,andIfeelthatforadecadenow Ihavebeenpayingforwardthegoodwillanddeepfriendlinessheshowedme duringmytimeatUrbana–Champaign.MikeandNeilarenotfarbehind.Mike has been my supervisor in one sense or another for years running, in which rolehehasbeencontinuallyencouragingandgiving.Amongotherthings,Neil sharedwithmeanoteofhisthateventuallyblossomedintomythesisproblem, whichisanawfullynicegifttohavegiven. Lessdirectlyinideasbutnolessdirectlyinstewardship,Ialsooweavery largedebttomyPh.D.adviser,ConstantinTeleman.BythetimeIarrivedatUC Berkeley,Iwasalreadytoosoakedthroughwithhomotopytheorytodevelopa flavorforhissortofmathematicalphysics,andhenonethelessendeavoredtomeet mewhereIwas.ItwasConstantinwhoencouragedmetofocusspecialattention onmakingtheseideasaccessible,speakingunderstandably,andhighlighting theconnectionswithnearbyfields.Heemphasizedthatmathematicsdonein isolation,ratherthaninmaximalconnectiontootherpeople,ismathematics wasted.Hehasverymuchcontributedtomypassionforcommunicationand xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.