ebook img

Form factors in the $\mathrm{B}_\mathrm{s} \rightarrow \mathrm{K} \ell \nu$ decays using HQET and the lattice PDF

0.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Form factors in the $\mathrm{B}_\mathrm{s} \rightarrow \mathrm{K} \ell \nu$ decays using HQET and the lattice

Form factors in the B → K(cid:96)ν decays using HQET s and the lattice 7 1 0 2 Debasish Banerjee∗ n JohnvonNeumannInstituteforComputing(NIC),DESY,Platanenallee6,15738Zeuthen, a J Germany. 7 fortheALPHAcollaboration. 1 E-mail: [email protected] ] t a We report on a recent computation of the form factors in semi-leptonic decays of the B using l s - p HeavyQuarkEffectiveTheory(HQET)formalismappliedonthelattice. Theconnectionofthe e formfactorswiththe2-pointand3-pointcorrelatorsonthelatticeisexplained,andthesubsequent h [ non-perturbative renormalization of HQET and it’s matching to Nf =2 QCD is outlined. The 2 resultsofthe(static)leading-ordercalculationinthecontinuumlimitispresented. v 3 2 9 3 0 . 1 0 7 1 : v i X r a 34thannualInternationalSymposiumonLatticeFieldTheory 24-30July2016 UniversityofSouthampton,UK ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ FormfactorsintheB →K(cid:96)ν decaysusingHQETandthelattice DebasishBanerjee s 1. Motivations TestingtheconsistencyandthecorrectnessoftheStandardModelisacentralgoalofparticle physics. The decays of the B-mesons and B-baryons can be used to improve the determination of several poorly known matrix elements of the Cabibo-Kobayashi-Maskawa (CKM) quark mixing matrix, and in particular |V |. The mean values of this fundamental parameter of the Standard ub Model extracted from inclusive decays agree with those extracted from the different exclusive decays(suchasB→π(cid:96)ν andB→τν)onlywhenthequoteduncertaintiesarestretchedbyafactor three [1]. It needs to be resolved whether this arises due to systematic uncertainties inherent in differenttreatments,orduetobeyondStandardModel(BSM)physics. We report on the determination of the form factors in the B →K(cid:96)ν decay in N =2 QCD, s f and the heavy quark effective theory (HQET) to account for the heavy quark on the lattice [2]. The formalism will be outlined here, especially the non-perturbative renormalization procedure andcontinuumlimitextrapolation. Theinvariantmassoftheleptonsiskeptfixedasthecontinuum limitistaken. Thedifferentialdecayratesatagivenq2 isrelatedtotherenormalizedformfactors (at the same q2) and |V |. A precise experimental determination of this differential decay rate ub would then allow for a reliable and accurate determination of |V |, when all the errors have been ub systematicallyaccountedfor. Inourtheoreticalcalculationweidentifyallthepossiblesystematic sources of error, providing a robust estimate of the exclusive observable. The complementary proceeding[3]describesthedetailsinvolvedintheextractionofthebareformfactorsonthelattice. On the lattice, the most challenging aspect for this reliable computation is the heavy quark itself [4]. Due it’s mass m ∼ 5GeV being comparable to that of inverse lattice spacing of the b finest lattice ensembles in use today, the discretization effects due to the heavy quark are particu- larlysevere. Atheoreticallycleanwaytoavoidthisproblemistheuseofaneffectivetheoryforthe heavyquark. However,thestate-of-artcomputations[5,6,7,8]useeitherarelativisticheavyquark action or a non-relativistic formulation of QCD on the lattice, which are affected by perturbative renormalization or uncontrolled discretion effects. A fully non-perturbative programme to renor- malize the currents does not yet exist. Conventional discretization errors are estimated only by power-countingmethods, whiletheactualextrapolationtothecontinuumlimitwithheavyquarks may involve a complicated dependence on the lattice spacing. Our computation seeks to address theseissuesanddemonstrateacleanextrapolationtothecontinuumlimitoftheformfactors. 2. Methodology Tomakecontactwithphenomenology,welistthefollowing"five-point"program: (i) reliablecomputationofgroundstatematrixelements(cid:104)K|Vµ(0)|B (cid:105), s (ii) renormalizationofthe matrixelements, eitherin fullQCD,or ifaneffectivetheory isbeing used,thenintheeffectivetheory,whichisthenmatchedtoQCD, (iii) extrapolationoftherenormalizedquantityatfinitelatticespacingstothecontinuumlimit, (iv) extrapolationofthe(light)quarkmassestotheirphysicalvalues, (v) mappingouttheq2 dependenceoftheformfactors,sinceexperimentsmeasurevaluesofthe differentialcross-section. 1 FormfactorsintheB →K(cid:96)ν decaysusingHQETandthelattice DebasishBanerjee s We employ lattice discretized HQET to compute the form factors on the lattice. While the first challengeisthesubjectof[3],thisproceedingisconcernedwiththesecondandthirditems. Work onthefourthpointisinprogress. Atthemoment,ourcomputationfocusesonafixedvalueofq2. 3. HQETonthelatticeandnon-perturbativerenormalization A B state with a momentum p decays into a Kaon K with momentum p mediated by s Bs K thevectorcurrent,Vµ(x)=ψ¯ (x)γ ψ (x). InQCD,weparameterizethematrixelementintotwo u µ b equivalentform-factordecompositions: (cid:32) (cid:33)µ m2 −m2 m2 −m2 (cid:104)K(p )|Vµ(0)|B (p )(cid:105) = p +p − Bs Kq · f (q2)+ Bs Kqµ· f (q2) K s Bs Bs K q2 + q2 0 = (cid:112)2m (cid:2)vµ·h (p ·v)+pµ ·h (p ·v)(cid:3) (3.1) Bs (cid:107) K ⊥ ⊥ K Thelastlinecanbeseenasadefinitionoftheformfactorsh andh whichwecompute. Theveloc- (cid:107) ⊥ ity,momentumandsquaredmomentumtransfer(q2)variablesarerelatedas: vµ = pµ /m , pµ = Bs Bs ⊥ pµ −(v·p )vµ, qµ = pµ −pµ, p ·v= m2Bs+m2K−q2. Usingnon-relativisticstatenormalizationin K K Bs K K 2mBs HQET removes the mass dependence present in the relativistic normalization: (cid:104)B (p(cid:48))|B (p)(cid:105)= s s 2E(p)(2π)3δ(p−p(cid:48)). Consequently, h ,h are independent of the heavy quark mass, modulo a ⊥ (cid:107) logarithmic dependence coming from the matching function between QCD and HQET. Note that inthelatter,theeffectiveheavyquarkfieldsaremassindependent,andhencenoadditionaldepen- denceoriginatesfromthevectorcurrent. ThelatticecomputationisperformedintherestframeoftheB meson: vµ =(1,0,0,0),where s theQCDmatrixelementsaresimplyrelatedtotheformfactorsvia: (2m )−1/2(cid:104)K(p )|V0(0)|B (p )(cid:105) = h (E ) (3.2) Bs K s Bs (cid:107) K (2m )−1/2(cid:104)K(p )|Vk(0)|B (p )(cid:105) = pkh (E ) (3.3) Bs K s Bs K ⊥ K TheonlykinematicvariableisE = p ·v,theenergyofthefinalstateKaon. Neglectingtermsof K K O(m2/m2 ,m2/q2),thedifferentialdecayratecanbedirectlyrelatedtotheformfactor: (cid:96) Bs (cid:96) dΓ(B →K(cid:96)ν) G2 s = F |V |2|p |3[f (q2)]2 (3.4) dq2 24π3 ub K + Withtheexperimentalmeasurementofthedifferentialdecayrateandareliableestimateof f (q2), + |V | can be accurately measured. We now discuss the renormalized form factors hstat,RGI, related ub (cid:107),⊥ totheQCDformfactorsh viathematchingfunction(s): (cid:107),⊥ h (E ) = C (M /Λ )hstat,RGI(E )·[1+O(1/m )] (3.5) (cid:107),⊥ K V0,Vk b MS (cid:107),⊥ K b Our computations use the N =2 QCD ensembles. A parallel project is non-perturbatively f matching the currents V between QCD and HQET, and will allow for the 1/m corrections to 0,k be computed [12]. For now, we remain with the static order, where most of the non-perturbative resultsareavailable. ThebarecurrentsVstat are: 0,k ←−S ←−S Vstat=ψ¯ γ ψ +ac (g )ψ¯ ∑∇ γ ψ ; Vstat=ψ¯ γ ψ −ac (g )ψ¯ ∑∇ γ γ ψ . (3.6) 0 u 0 h V0 0 u l h k u k h Vk 0 u l k h l l 2 FormfactorsintheB →K(cid:96)ν decaysusingHQETandthelattice DebasishBanerjee s The leading term is the same as in QCD, except that the heavy quark fields are denoted by ψ¯ , h and the HYP1 and HYP2 heavy quark actions are considered [9], which have an exponentially bettersignal-to-noiseratioascomparedtotheclassicEichten-Hillactionfortheheavyquarks. In addition, there is the O(a) improvement term, whose coefficients are currently known to 1-loop order: c =c(1)g2+O(g4). They are relatively small [10]: for HYP1, c =0.0223(6), c = x x 0 0 V0 Vk 0.0029(2)whileforHYP2,c =0.0518(2), c =0.0380(6). V0 Vk InHQET,thecurrentsgetrenormalizedmultiplicatively. Atthestaticorder,thespinsymmetry ofHQETresultsinthesamerenormalizationofthevectorcurrentastheaxialcurrent: Zstat,RGI = Vk Zstat,RGI,butanextrafactorZstat (g )forV ,asWilsonfermionsbreakchiralsymmetry: A0 V/A 0 0 Vstat,RGI=Zstat,RGI(g )Zstat (g )Vstat; Vstat,RGI=Zstat,RGI(g )Vstat. (3.7) 0 A0 0 V/A 0 0 k A0 0 k Thecrucialaspectofournon-perturbativerenormalizationsetupproceedsviathecalculationofthe RGI(renormalizationgroupinvariant)quantitiesΦRGI,whicharebothschemeandscaleindepen- dent. For a renormalized static heavy-light current, the the differential equation for the physical quantityatdifferentscalesµ,canbeintegratedinperturbationtheory: (ARGI) = lim[2b g¯2(µ)]−γ0/2b0(Astat) (µ) (3.8) 0 0 R 0 µ→∞ The integration constant in the left hand side is completely independent of scale of the running coupling g¯2(µ), the renormalized current and the scheme used to compute them. γ and b are 0 0 the universal 1-loop coefficients of the running mass and the couplings. The goal therefore is to determinetheintegrationconstant. Thenon-perturbativeanalogisexpressedas: ZAst,aRtGI(g0)= ΦΦ(RµG)I ×ZAstat(g0,aµ)(cid:12)(cid:12)µ=2Lm1ax . (3.9) The first universal factor relates the renormalization of Astat at a scale µ =1/L calculated in 0 0 max a scheme to the RGI operator, while the second factor knows about the lattice discretization. The computationofbothfactorswasdonein[11], wheretheSchrödingerfunctionalschemewasused to compute the RGI quantity, and yielded ΦRGI/Φ(µ)=0.880(7). Finally, for our computation, we used a a generous range [Zstat (g )]−1 = 0.97(3), motivated by comparing the value for the V/A 0 quenchedapproximation,notingtheabsenceofN dependenceatthe1-looporder. Thisuncertainly f onlyaffectsthe1/m terms,andwillbeeliminatedinthenon-perturbativematchingprogram[12]. h 4. MatchingtoQCD TherenormalizedformfactorsneedtobematchedtothatofQCDviatheconversionfunctions C . Thesecanbeobtainedbycalculatingamatrixelementuptoagivenorderinboththeoriesand x then matching the expressions. As a pedagogical example, consider the matrix element M of the renormalizedaxialcurrentinboth1-loopQCDandHQETintheleadingorder(stat). Tomakethe theoriesagree,wematchtheexpressions[4]obtainedforQCD,withthatofHQET: 1 M (L,m ) = [1+g2(−γ ln(m L)+B )]M(0)+O(g4)+O( ), (4.1) QCD h 0 h QCD m L h M (µL) = [1+g2(−γ ln(µL)+B )]M(0)+O(g4). (4.2) stat 0 lat Expressedintermsoftherunningcouplingg2,andrenormalizedmass,equatingtheleadingorder givesthemultiplicativematchingfunctionbetweenthetwotheories:C =1+g2γ ln(µ/m )+ match 0 h (B −B )+O(g4),motivatingthethelogarithmicdependenceontheheavyquarkmass. QCD lat 3 FormfactorsintheB →K(cid:96)ν decaysusingHQETandthelattice DebasishBanerjee s A non-perturbative matching of the currents is underway by the ALPHA collaboration [12]. Meanwhile,forourpurposes,weusethebestavailableperturbativeresults. Amajoradvantagein ourprocedureofusingtheRGIoperatorsisthatwecandirectlyusetheresultsfromrenormalized continuum perturbation theory [13], as opposed to other results in the literature which use bare perturbation theory. The limitation here is on the knowledge of the running quark mass, which haveuncertaintiesofO(α3),andtranslatestothesamelevelofuncertaintiesonourestimateofthe s totalZ =C ×Zstat,RGI[4]. Thisisalreadybetterbyonemoreorderinα thantheotherapproaches x x x s usedintheliteraturewhichhaveuncertaintiesofatleastO(α2). s 5. Thecontinuumlimit Wenowoutlineourresultsforthecontinuumlimitsoftheformfactors. Computationsofthe bareformfactorsarerepeatedfordifferentlatticeensembleswithdecreasinglatticespacings. For this, the N =2 ensembles by the Coordinated Lattice Simulations (CLS) effort [14] were used. f Thechosenensembles(withlabelsA5,F6andN6)allhaveroughlythesamepionmass(330,310, 340 MeV respectively), and the lattice spacing decreases like 0.0749(8), 0.0652(6) and 0.0483(4) fmrespectively. Thespatialdimensionofthelatticessatisfym L>4andanaspectratioof2. The π ensembleshavedegeneratelightquarks. ThestrangequarkmassisfixedbyfixingtheKaonmass inunitsoftheKaondecayconstanttoit’sphysicalvalueatourlightquarkmasses. 0.33 HYP1 HYP1 HYP2 3.6 HYP2 0.32 3.4 RGI√h/2 M||Bs 00..3301 RGI√h 2 M⊥ Bs 3 .32 0.29 2.8 0.28 0 0.001 0.002 0.003 0.004 0.005 0.006 0 0.001 0.002 0.003 0.004 0.005 0.006 a2 [fm2] a2 [fm2] Figure 1: The linear extrapolation in a2 to the continuum limit of the 1-loop O(a) improved RGI form factorshstat,RGI(left)andhstat,RGI(right).ThedifferentdiscretizationsHYP1/2areshiftedtoensurevisibility. (cid:107) ⊥ Since the computations keep the physical momentum p =0.535 GeV fixed, flavor twisted K boundaryconditionsarenecessarytoimpartthesame(three-)momentumtotheKaonasthelattice spacing varies: ψ (x+L1ˆ)=eiθψ (x). The aforementioned Kaon momentum is obtained with a s s lattice momentum of (1,0,0) on the finest lattice (N6). On the F6 and A5, therefore, we choose flavor twisted boundary conditions, such that, p = (1,0,0)(2π+θ)/L. The F6 gets a larger K (θ/(2π)=0.350)twistascomparedtoA5(θ/(2π)=0.034)duetotherespectivelatticesize. The B mesonisalwayskeptatrest. Forourvalueofp ,themomentumtransferredisq2=21.22GeV2 s K onalllattices,withanerrorof0.03−0.05GeV2 duetothelatticespacing. Whiletheextractionofthebareformfactorsisexplainedin[3],weshowhowthecontinuum limit can be extracted with the RGI form factors. In the error analysis, the statistical correlations 4 FormfactorsintheB →K(cid:96)ν decaysusingHQETandthelattice DebasishBanerjee s andautocorrelationsarealltakenintoaccount[15,16]. Theresultsofthecontinuumextrapolation isshowninFig1. Alistofthevaluescanbefoundin[2]. Thecontinuumlimitisobtainedwithan extrapolationlinearina2,withthec =c(1)g2. Whiletheh givesacompatibleestimatebyfitting x x 0 (cid:107) ittoaconstant(andnaturallywithsmallererrorbars),wekeepthea2 extrapolationsbecausethere is no reason why these should disappear. Also, the O(a) corrections from perturbation theory do not matter at the precision of our data. This gives us: hstat,RGI =0.976(41)GeV1/2 and hstat,RGI = (cid:107) ⊥ 0.876(43)GeV−1/2. Wecannowestimatetheformfactor f usingdifferentsystematicsfor1/m suppressedterms. + h Two such estimates are f and f . In the first one, all the known terms and kinematic factors +,1 +,2 are controlled, expect in hstat,RGI (which have suppressed uncontrolled 1/m contributions), while ⊥,(cid:107) h inthesecondone f allthe1/m termsaresystematicallydropped: +,2 h (cid:114) (cid:18) (cid:19) m E 1 f = Bs (1− K )C hstat,RGI(E )+ C hstat,RGI(E ) (5.1) +,1 2 m Vk ⊥ K m V0 (cid:107) K Bs Bs (cid:114) m f = BsC hstat,RGI(E ). (5.2) +,2 2 Vk ⊥ K Numerically, the values are: f = 1.77(7)(7) and f = 1.63(8)(6). Comparing these esti- +,1 +,2 mates, wesee that theO(1/m ) termscontribute like(1− EK ), andwe have asystematic∼15% h m Bs ambiguity/uncertainty due to the dropping of these terms. Thus we have a preliminary estimate: f (21.22GeV2)= f ±0.15f =1.63(8)(6)±0.24. TheseconderrorbarsaretheO(α3)per- + +,2 +,2 s turbativeuncertaintiesinthematchingfunctions. Wenotethatthissystematicerrorisexpectedto dropto∼1−2%whenallthe1/m willbesystematicallyincluded. h Thequantity f isalsooftenquotedintheliterature,whichisdefinedas: 0 (cid:112)2/m (cid:18) E p2 (cid:19) f = Bs (1− K )C hstat,RGI(E )+ K C hstat,RGI(E ) (5.3) 0 1−m2/m2 m V0 (cid:107) K m Vk ⊥ K K Bs Bs Bs Forthisnumber,weestimate f =0.663(3)(1). Theresultsfor f agreewellwiththoseexisting 0 +,0 intheliterature: ForFlynnetal. [6],theformfactorsextractedatourvaluesofq2are f (cid:39)1.65(10) + and f (cid:39)0.62(5),whileBouchardetal. [7]report f (cid:39)1.80(20)and f (cid:39)0.66(5). Giventhatour 0 + 0 calculation has a very different source of systematic uncertainty, this agreement is very necessary forphenomenologicalapplications. 6. ConclusionandOutlook Wereportthefirststudyofthecontinuumlimitofnon-perturbativelyrenormalizedformfac- tors. Since the stress is on the continuum limit we have kept the momentum transfer fixed at q2 =21.22GeV2. In the static limit, we have precise non-perturbative determinations of the RGI formfactors. ThematchingtoQCDisperturbative,andonlyhasuncertaintiesoforderO(α3). The s discretizationeffectsarenotverylarge,allowingasmoothlineara2extrapolationtothecontinuum. Ontheotherhand1/m effectsneedtoincorporated. h The agreement of the various methods in the extraction of the form factors increase our con- fidence in their extraction using lattice techniques. Once the 1/m are included they will be of h 5 FormfactorsintheB →K(cid:96)ν decaysusingHQETandthelattice DebasishBanerjee s direct phenomenological interest. This is envisaged as a direct follow-up of the project. Prelim- inary investigations are already in progress. For connection to phenomenology, the extrapolation to the physical light quarks will also be considered, as well as the computation at another value of the momentum. The basic results for the continuum extrapolation presented here inspire the confidencethatpreciselatticeresults, canbeusedtogetherwithexperimentalmeasurementsfora reliableextractionofV inthenearfuture. ub References [1] TheReviewofParticlePhysics(2016),C.Patrigiannietal.,Chin.Phys.C,40,100001(2016). [2] F.Bahretal.,ContinuumlimitoftheleadingorderHQETformfactorinB →K(cid:96)ν decays,Phys. s Lett.B757(2016),473. [3] F.Bahretal.,Extractionofthebareformfactorsforthesemi-leptonicB decays, s PoS(LATTICE2016)295. [4] R.Sommer,Non-perturbativeHeavyQuarkEffectiveTheory: IntroductionandStatus,Nucl.Part. Phys.Proc.261(2015)338. [5] FermilabLattice,MILCcollaboration,J.A.Baileyetal.,|V |fromB→π(cid:96)ν decaysand(2+1)-flavor ub latticeQCD,Phys.Rev.D92(2015)014024. [6] J.M.Flynnetal.,B→π(cid:96)ν andB →K(cid:96)ν formfactorsand|V |from2+1-flavorlatticeQCDwith s ub domain-walllightquarksandrelativisticheavyquarks,Phys.Rev.D91(2015),074510. [7] C.Bouchard,G.P.Lepage,C.Monahan,H.NaandJ.Shigemitsu,B →K(cid:96)ν formfactorsfrom s latticeQCD,Phys.Rev.D90(2014),054506. [8] B.Colquhoun,R.J.Dowdall,J.Koponen,C.T.H.DaviesandG.P.Lepage,B→π(cid:96)ν atzerorecoil fromlatticeQCDwithphysicalu/dquarks,Phys.Rev.D93(2016),034502. [9] M.DellaMorte,A.ShindlerandR.Sommer,Onlatticeactionsforstaticquarks,JHEP0508(2005) 051. [10] A.Grimbach,D.Guazzini,F.KnechtliandF.Palombi,O(a)improvementoftheHYPstaticaxialand vectorcurrentsatone-looporderofperturbationtheory,JHEP03(2008)039. [11] M.DellaMorte,P.FritzschandJ.Heitger,Non-perturbativerenormalizationofthestaticaxialcurrent intwo-flavourQCD,JHEP0702(2007)079. [12] M.DellaMorte,J.Heitger,P.Korcyl,H.Simma,C.Wittemeier,Non-perturbativematchingofHQET heavy-lightaxialandvectorcurrentsinN =2latticeQCD,PoS(LATTICE2016)199. f [13] S.Bekavacetal.,MatchingQCDandHQETheavy-lightcurrentsatthreeloops,NPB833(2010)46. [14] P.Fritzschetal.,ThestrangequarkmassandLambdaparameteroftwoflavorQCD,NPB865(2012) 397. [15] F.Bernardonietal.,Theb-quarkmassfromnon-perturbativeN =2HeavyQuarkEffectiveTheory f atO(1/m ),Phys.Lett.B730(2014)171. h [16] ALPHAcollaboration,U.Wolff,MonteCarloerrorswithlesserrors,Comput.Phys.Commun.156 (2004)143; ALPHAcollaboration,S.Schaefer,R.SommerandF.Virotta,Criticalslowingdownanderror analysisinlatticeQCDsimulations,NPB845(2011)93. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.