ebook img

Foreign-Exchange-Rate Forecasting with Artificial Neural Networks (International Series in Operations Research & Management Science) PDF

322 Pages·2007·3.36 MB·English
by  Lean Yu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foreign-Exchange-Rate Forecasting with Artificial Neural Networks (International Series in Operations Research & Management Science)

FOREIGN-EXCHANGE-RATE FORECASTING WITH ARTIFICIAL NEURAL NETWORKS Recent titles in the INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE Frederick S. Hillier, Series Editor, Stanford University Gass & Assad/ AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH An Informal History Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN OPERATIONS RESEARCH Weber/ UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY Methods and Models for Decision Support Figueira, Greco & Ehrgott/ MULTIPLE CRITERIA DECISION ANALYSIS State of the Art Surveys Reveliotis/ REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS A Discrete Event Systems Approach Kall & Mayer/ STOCHASTIC LINEAR PROGRAMMING Models, Theory, and Computation Sethi, Yan & Zhang/ INVENTORY AND SUPPLY CHAIN MANAGEMENT WITH FORECAST UPDATES Cox/ QUANTITATIVE HEALTH RISK ANALYSIS METHODS Modeling the Human Health Impacts of Antibiotics Used in Food Animals Ching & Ng/ MARKOV CHAINS Models, Algorithms and Applications Li & Sun/ NONLINEAR INTEGER PROGRAMMING Kaliszewski/ SOFT COMPUTING FOR COMPLEX MULTIPLE CRITERIA DECISION MAKING Bouyssou et al/ EVALUATION AND DECISION MODELS WITH MULTIPLE CRITERIA Stepping stones for the analyst Blecker & Friedrich/ MASS CUSTOMIZATION Challenges and Solutions Appa, Pitsoulis & Williams/ HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION Herrmann/ HANDBOOK OF PRODUCTION SCHEDULING Axsäter/ INVENTORY CONTROL, 2nd Ed. Hall/ PATIENT FLOW Reducing Delay in Healthcare Delivery Józefowska & Węglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING Tian & Zhang/ VACATION QUEUEING MODELS Theory and Applications Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS, AND MANUFACTURING SYSTEMS Saaty & Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS Economic, Political, Social & Technological Applications w. Benefits, Opportunities, Costs & Risks Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT Practical Concepts and Tools Kandiller/ PRINCIPLES OF MATHEMATICS IN OPERATIONS RESEARCH Lee & Lee/ BUILDING SUPPLY CHAIN EXCELLENCE IN EMERGING ECONOMIES Weintraub/ MANAGEMENT OF NATURAL RESOURCES A Handbook of Operations Research Models, Algorithms, and Implementations Hooker/ INTEGRATED METHODS FOR OPTIMIZATION Dawande et al/ THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS Friesz/ NETWORK SCIENCE, NONLINEAR SCIENCE AND DYNAMIC GAME THEORY APPLIED TO THE STUDY OF INFRASTRUCTURE SYSTEMS Cai, Sha & Wong/ TIME-VARYING NETWORK OPTIMIZATION Mamon & Elliott/ HIDDEN MARKOV MODELS IN FINANCE del Castillo/ PROCESS OPTIMIZATION A Statistical Approach Józefowska/JUST-IN-TIME SCHEDULING Models & Algorithms for Computer & Manufacturing Systems * A list of the early publications in the series is at the end of the book * FOREIGN-EXCHANGE-RATE FORECASTING WITH ARTIFICIAL NEURAL NETWORKS Lean YU, Shouyang WANG and Kin Keung LAI Lean Yu Shouyang Wang Chinese Academy of Sciences Chinese Academy of Sciences Beijing, China Beijing, China King Keung Lai City University of Hong Kong Kowloon, Hong Kong Series Editor: Fred Hillier Stanford University Stanford, CA, USA Library of Congress Control Number: 2007926588 ISBN-13: 978-0-387-71719-7 e-ISBN-13: 978-0-387-71720-3 Printed on acid-free paper. © 2007 by Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 9 8 7 6 5 4 3 2 1 springer.com Table of Contents Preface.......................................................................................................xi Biographies of Three Authors of the Book............................................xv List of Figures........................................................................................xvii List of Tables...........................................................................................xxi Part I: Forecasting Foreign Exchange Rates with Artificial Neural Networks: An Analytical Survey............................1 1 Are Foreign Exchange Rates Predictable? — A Literature Review from Artificial Neural Networks Perspective.........................3 1.1 Introduction....................................................................................................3 1.2 Literature Collection.......................................................................................5 1.3 Analytical Results and Factor Investigation..................................................7 1.3.1 Basic Classifications and Factors Summarization................................7 1.3.2 Factor Analysis......................................................................................8 1.4 Implications and Research Topics................................................................21 1.5 Conclusions..................................................................................................23 Part II: Basic Learning Principles of Artificial Neural Networks and Data Preparation.....................................25 2 Basic Learning Principles of Artificial Neural Networks..................27 2.1 Introduction..................................................................................................27 2.2 Basic Structure of the BPNN Model............................................................28 2.3 Learning Process of the BPNN Algorithm...................................................30 2.4 Weight Update Formulae of the BPNN Algorithm......................................31 2.5 Conclusions..................................................................................................37 3 Data Preparation in Neural Network Data Analysis.........................39 3.1 Introduction..................................................................................................39 3.2 Neural Network for Data Analysis...............................................................42 vi Table of Contents 3.3 An Integrated Data Preparation Scheme......................................................44 3.3.1 Integrated Data Preparation Scheme for Neural Network Data Analysis......................................................................................44 3.3.2 Data Pre-Analysis Phase.....................................................................46 3.3.3 Data Preprocessing Phase....................................................................51 3.3.4 Data Post-Analysis Phase....................................................................56 3.4 Costs–Benefits Analysis of the Integrated Scheme.....................................59 3.5 Conclusions..................................................................................................61 Part III: Individual Neural Network Models with Optimal Learning Rates and Adaptive Momentum Factors for Foreign Exchange Rates Prediction..........63 4 Forecasting Foreign Exchange Rates Using an Adaptive Back-Propagation Algorithm with Optimal Learning Rates and Momentum Factors ...........................................65 4.1 Introduction..................................................................................................65 4.2 BP Algorithm with Optimal Learning Rates and Momentum Factors................................................................................68 4.2.1 Optimal Learning Rates Determination..............................................68 4.2.2 Determination of Optimal Momentum Factors...................................76 4.3 Experiment Study.........................................................................................78 4.3.1 Data Description and Experiment Design...........................................78 4.3.2 Experimental Results...........................................................................80 4.4 Concluding Remarks....................................................................................84 5 An Online BP Learning Algorithm with Adaptive Forgetting Factors for Foreign Exchange Rates Forecasting..............................87 5.1 Introduction..................................................................................................87 5.2 An Online BP Learning Algorithm with Adaptive Forgetting Factors........88 5.3 Experimental Analysis.................................................................................94 5.3.1 Data Description and Experiment Design...........................................94 5.3.2 Experimental Results...........................................................................96 5.4 Conclusions..................................................................................................99 6 An Improved BP Algorithm with Adaptive Smoothing Momentum Terms for Foreign Exchange Rates Prediction...........101 6.1 Introduction................................................................................................101 Table of Contents vii 6.2 Formulation of the Improved BP Algorithm..............................................103 6.2.1 Determination of Adaptive Smoothing Momentum.........................103 6.2.2 Formulation of the Improved BPNN Algorithm...............................106 6.3 Empirical Study..........................................................................................108 6.3.1 Data Description and Experiment Design.........................................109 6.3.2 Forecasting Results and Comparisons..............................................109 6.3.3 Comparisons of Different Learning Rates........................................112 6.3.4 Comparisons with Different Momentum Factors ............................113 6.3.5 Comparisons with Different Error Propagation Methods.................114 6.3.6 Comparisons with Different Numbers of Hidden Neurons...............115 6.3.7 Comparisons with Different Hidden Activation Functions..............116 6.4 Comparisons of Three Single Neural Network Models.............................117 6.5 Conclusions................................................................................................117 Part IV: Hybridizing ANN with Other Forecasting Techniques for Foreign Exchange Rates Forecasting.....................................................................119 7 Hybridizing BPNN and Exponential Smoothing for Foreign Exchange Rate Prediction .................................................................121 7.1 Introduction ................................................................................................121 7.2 Basic Backgrounds.....................................................................................123 7.2.1 Exponential Smoothing Forecasting Model......................................123 7.2.2 Neural Network Forecasting Model..................................................125 7.3 A Hybrid Model Integrating BPNN and Exponential Smoothing.............127 7.4 Experiments................................................................................................129 7.5 Conclusions................................................................................................130 8 A Nonlinear Combined Model Hybridizing ANN and GLAR for Exchange Rates Forecasting........................................................133 8.1 Introduction................................................................................................133 8.2 Model Building Processes..........................................................................136 8.2.1 Generalized Linear Auto-Regression (GLAR) Model......................136 8.2.2 Artificial Neural Network (ANN) Model.........................................138 8.2.3 A Hybrid Model Integrating GLAR with ANN................................139 8.2.4 Combined Forecasting Models..........................................................141 viii Table of Contents 8.2.5 A Nonlinear Combined (NC) Forecasting Model.............................142 8.2.6 Forecasting Evaluation Criteria.........................................................145 8.3 Empirical Analysis.....................................................................................148 8.3.1 Data Description................................................................................148 8.3.2 Empirical Results..............................................................................148 8.4 Conclusions................................................................................................153 9 A Hybrid GA-Based SVM Model for Foreign Exchange Market Tendency Exploration..........................................................155 9.1 Introduction................................................................................................155 9.2 Formulation of the Hybrid GA-SVM Model.............................................158 9.2.1 Basic Theory of SVM.......................................................................158 9.2.2 Feature Selection with GA for SVM Modeling................................160 9.2.3 A Hybrid GASVM Model.................................................................164 9.3 Empirical Study..........................................................................................165 9.3.1 Research Data....................................................................................165 9.3.2 Descriptions of Other Comparable Forecasting Models...................167 9.3.3 Experiment Results...........................................................................168 9.4 Comparisons of Three Hybrid Neural Network Models............................172 9.5 Conclusions................................................................................................173 Part V: Neural Network Ensemble for Foreign Exchange Rates Forecasting............................................................175 10 Forecasting Foreign Exchange Rates with a Multistage Neural Network Ensemble Model................................................................177 10.1 Introduction............................................................................................177 10.2 Motivations for Neural Network Ensemble Model................................179 10.3 Formulation of Neural Network Ensemble Model.................................181 10.3.1 Framework of Multistage Neural Ensemble Model....................181 10.3.2 Preprocessing Original Data........................................................182 10.3.3 Generating Individual Neural Predictors....................................185 10.3.4 Selecting Appropriate Ensemble Members.................................187 10.3.5 Ensembling the Selecting Members............................................192 10.4 Empirical Analysis.................................................................................196 10.4.1 Experimental Data and Evaluation Criterion..............................196 10.4.2 Experiment Design......................................................................196 Table of Contents ix 10.4.3 Experiment Results and Comparisons........................................198 10.5 Conclusions............................................................................................201 11 Neural Networks Meta-Learning for Foreign Exchange Rate Ensemble Forecasting.......................................................................203 11.1 Introduction............................................................................................203 11.2 Introduction of Neural Network Learning Paradigm.............................204 11.3 Neural Network Meta-Learning Process for Ensemble.........................206 11.3.1 Basic Background of Meta-Learning..........................................206 11.3.2 Data Sampling.............................................................................207 11.3.3 Individual Neural Network Base Model Creation......................209 11.3.4 Neural Network Base Model Pruning.........................................210 11.3.5 Neural-Network-Based Meta-Model Generation........................212 11.4 Empirical Study......................................................................................213 11.4.1 Research Data and Experiment Design.......................................213 11.4.2 Experiment Results.....................................................................215 11.5 Conclusions............................................................................................216 12 Predicting Foreign Exchange Market Movement Direction Using a Confidence-Based Neural Network Ensemble Model......217 12.1 Introduction............................................................................................217 12.2 Formulation of Neural Network Ensemble Model.................................219 12.2.1 Partitioning Original Data Set.....................................................220 12.2.2 Creating Individual Neural Network Classifiers.........................221 12.2.3 BP Network Learning and Confidence Value Generation..........222 12.2.4 Confidence Value Transformation..............................................223 12.2.5 Integrating Multiple Classifiers into an Ensemble Output..........223 12.3 Empirical Study......................................................................................226 12.4 Comparisons of Three Ensemble Neural Networks...............................230 12.5 Conclusions............................................................................................230 13 Foreign Exchange Rates Forecasting with Multiple Candidate Models: Selecting or Combining? A Further Discussion..............233 13.1 Introduction............................................................................................233 13.2 Two Dilemmas and Their Solutions.......................................................237 13.3 Empirical Analysis.................................................................................242 13.4 Conclusions and Future Directions........................................................244 x Table of Contents Part VI: Developing an Intelligent Foreign Exchange Rates Forecasting and Trading Decision Support System..............................................................247 14 Developing an Intelligent Forex Rolling Forecasting and Trading Decision Support System I: Conceptual Framework, Modeling Techniques and System Implementations...............................................................................249 14.1 Introduction............................................................................................249 14.2 System Framework and Main Functions................................................250 14.3 Modeling Approach and Quantitative Measurements............................252 14.3.1 BPNN-Based Forex Rolling Forecasting Sub-System................253 14.3.2 Web-Based Forex Trading Decision Support System................263 14.4 Development and Implementation of FRFTDSS...................................269 14.4.1 Development of the FRFTDSS...................................................269 14.4.2 Implementation of the FRFTDSS...............................................270 14.5 Conclusions............................................................................................274 15 Developing an Intelligent Forex Rolling Forecasting and Trading Decision Support System II: An Empirical and Comprehensive Assessment......................................................275 15.1 Introduction............................................................................................275 15.2 Empirical Assessment on Performance of FRFTDSS...........................276 15.2.1 Parametric Evaluation Methods..................................................276 15.2.2 Nonparametric Evaluation Methods...........................................278 15.3 Performance Comparisons with Classical Models.................................280 15.3.1 Selection for Comparable Classical Models...............................280 15.3.2 Performance Comparison Results with Classical Models..........280 15.4 Performance Comparisons with Other Systems.....................................281 15.4.1 Searching for Existing Forex Forecasting Systems....................281 15.4.2 Performance Comparisons with Other Existing Systems...........283 15.4.3 A Comprehensive Comparison Analysis....................................285 15.5 Discussions and Conclusions.................................................................288 References...............................................................................................291 Subject Index..........................................................................................311

Description:
This book focuses on forecasting foreign exchange rates via artificial neural networks (ANNs), creating and applying the highly useful computational techniques of Artificial Neural Networks (ANNs) to foreign-exchange rate forecasting. The result is an up-to-date review of the most recent research de
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.