FOREIGN EXCHANGE DERIVATIVES: Advanced Hedging and Trading Techniques by Dr. A. A. Kotze´ Financial Chaos Theory Pty. Ltd. March 2011 http: www.quantonline.co.za \\ Philosophy is written in that great book whichever lies before our gaze — I mean the universe — but we cannot understand if we do not first learn the language and grasp the symbols in which it is written. The book is written in the mathematical language, and the symbols are triangle, circles and other geometrical figures, without the help of which it is impossible to conceive a single word of it, and without which one wonders in vain through a dark labyrinth. GalileoGalilei(1564-1642) Abstract Instruments traded in the financial markets are getting more and more complex. This leads to more complex derivative structures that are harder to analyse and risk managed. These instruments cannot be traded or managed without the relevant systems and numerical techniques. The global economy is becoming more and more interlinked with trading between countries skyrocketing. Due to the world trade, foreign exchange forwards, futures, options and exotics are becoming increasingly commonplace in today’s capital mar- kets. The objective of these notes is to let the reader develop a solid understanding of the current currency derivatives used in international treasury management with an emphasis on the African continent. This will give participants the mathematical and practical background necessary to deal with all the products on the market. Before I came here I was confused about the subject. Having listened to your lecture I am still confused. But on a higher level. EnricoFermi(1901-1954) Financial Chaos Theory Pty. Ltd. Illuminating OTC and listed Derivatives through: consulting services training workshops/seminars In-house training quantitative analysis research modeling complex optionality model building software products and development risk management and analysis structured products Financial Chaos Theory PO Box 16185 Doornfontein 2028 South Africa [email protected] But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed. AlbertEinstein Contents 1 Introduction 11 1.1 Option Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Why trade FX Options versus the Spot FX? . . . . . . . . . . . . . . 13 1.3 The Black & Scholes Environment . . . . . . . . . . . . . . . . . . . 14 1.4 The Seminal Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 A Currency Option Model . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6 Options on Forwards and Futures . . . . . . . . . . . . . . . . . . . . 18 1.7 Settlement Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.8 Put-Call-Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 Option Dynamics and Risk Managements . . . . . . . . . . . . . . . 20 1.9.1 The Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.9.2 The Gamma and Theta Relationship . . . . . . . . . . . . . . 25 1.10 Useful Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.10.1 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.10.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.10.3 Put-Call-Delta Parity . . . . . . . . . . . . . . . . . . . . . . . 27 1.10.4 Symmetries for Currency Options . . . . . . . . . . . . . . . . 27 1.11 The Volatility Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.11.1 Universality of the Skew . . . . . . . . . . . . . . . . . . . . . 28 1.11.2 Why do we observe a Skew? . . . . . . . . . . . . . . . . . . . 30 1.11.3 Shapes of the skew . . . . . . . . . . . . . . . . . . . . . . . . 31 1.11.4 Delta Hedging and the Skew . . . . . . . . . . . . . . . . . . . 31 1.11.5 The Term Structure of Volatility . . . . . . . . . . . . . . . . 33 1.11.6 What is a Volatility Surface? . . . . . . . . . . . . . . . . . . . 35 1.11.7 Skews in South Africa . . . . . . . . . . . . . . . . . . . . . . 35 1.12 Sticky Volatilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.12.1 Sticky Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.12.2 Sticky Strike . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.12.3 Which is better: sticky strike or sticky delta? . . . . . . . . . 37 1.13 The Binomial Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1 2 Practical Use of Option Models 42 2.1 Hedging Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1.1 The Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.2 Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.1.3 Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.1.4 Rho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.1.5 Vega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.1.6 Other Risk Parameters . . . . . . . . . . . . . . . . . . . . . . 51 2.2 Hedging in Practise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3 More Realistic Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.1 Impact Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.2 Impact Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4 Formalising Hedging Schemes . . . . . . . . . . . . . . . . . . . . . . 58 2.4.1 Delta Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.2 Delta-Gamma Hedging . . . . . . . . . . . . . . . . . . . . . . 59 2.4.3 Theta Neutral . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.4 Vega Neutral . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.5 Imperfections of the Black-Sholes Model . . . . . . . . . . . . . . . . 60 2.5.1 Lognormality . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.5.2 Delta Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.5.3 Transaction Costs . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.5.4 Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5.5 Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5.6 Price Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5.7 Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6 Tricks of the Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6.2 Risk Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.6.3 Yield Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.6.4 Technicals, Economic Information and Company Analysis . . . 63 2.6.5 Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.7 Using Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.7.1 Volatility Spread . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.7.2 Volatility Based Option Strategies . . . . . . . . . . . . . . . . 64 2.7.3 Option Volume and Volatility Changes . . . . . . . . . . . . . 64 2.7.4 The Volatility Term Structure . . . . . . . . . . . . . . . . . . 64 2.7.5 Volatility Matrices . . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.6 Volatility as an Trading Indicator . . . . . . . . . . . . . . . . 65 2.8 The Skew and its Uses . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.8.1 Trading the Skew . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.8.2 What about the Future? . . . . . . . . . . . . . . . . . . . . . 66 2.8.3 Counterintuitive Thinking . . . . . . . . . . . . . . . . . . . . 66 2 2.8.4 Supply and Demand . . . . . . . . . . . . . . . . . . . . . . . 66 2.8.5 Other Influences . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.8.6 The Skew in Other Markets . . . . . . . . . . . . . . . . . . . 67 2.9 Buying and Selling Volatility . . . . . . . . . . . . . . . . . . . . . . . 68 2.9.1 Shorting Volatility . . . . . . . . . . . . . . . . . . . . . . . . 70 2.9.2 Buying Volatility . . . . . . . . . . . . . . . . . . . . . . . . . 70 3 Exchange Traded FX Derivatives 72 3.1 Advantages of a Futures Market . . . . . . . . . . . . . . . . . . . . . 72 3.2 Making a Market in Futures/Forwards . . . . . . . . . . . . . . . . . 72 3.3 The Cost of Carry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4 Currency Futures Dispensation in South Africa . . . . . . . . . . . . 73 3.5 Justification for a Futures Market . . . . . . . . . . . . . . . . . . . . 73 3.6 Futures versus Forwards . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.7 Economics of Hedging with Currency Futures . . . . . . . . . . . . . 76 3.8 Choosing between Futures and Forwards . . . . . . . . . . . . . . . . 80 3.9 The Role of the Stock Exchange . . . . . . . . . . . . . . . . . . . . . 81 3.9.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.9.2 What is a Stock Exchange . . . . . . . . . . . . . . . . . . . . 81 3.9.3 Objectives for Using Financial Instruments . . . . . . . . . . . 82 3.10 The Role of the Clearing House . . . . . . . . . . . . . . . . . . . . . 82 3.11 Member Brokers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.12 Margining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.13 Spread Margining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.14 Offsetting Margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.15 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.15.1 Who Trades Futures? . . . . . . . . . . . . . . . . . . . . . . . 89 3.15.2 Risk Measurement . . . . . . . . . . . . . . . . . . . . . . . . 90 3.15.3 Risk Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.15.4 Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.15.5 Arbitrage Opportunities . . . . . . . . . . . . . . . . . . . . . 95 3.16 What is Margin, Novation and Safcom? . . . . . . . . . . . . . . . . . 95 3.17 Initial and Variation Margin . . . . . . . . . . . . . . . . . . . . . . . 97 3.18 Safex Can-Do Structures . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.18.1 Advantages of Listed Derivatives . . . . . . . . . . . . . . . . 99 3.18.2 Disadvantages of OTC Derivatives . . . . . . . . . . . . . . . 99 3.18.3 Exotic Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 100 3.18.4 Exotics: the way Forward . . . . . . . . . . . . . . . . . . . . 101 3 4 Shariah Compliant Derivatives 103 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Shari’ah Compliant Derivatives . . . . . . . . . . . . . . . . . . . . . 104 4.3 Futures Contracts and Islamic Finance . . . . . . . . . . . . . . . . . 105 4.3.1 Ba’i Salam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.2 The Salam Contract & Islamic Financial Institutions . . . . . 107 4.3.3 Istisna and Joala Contracts . . . . . . . . . . . . . . . . . . . 108 4.3.4 The Bai’bil-wafa and Bai ’bil Istighlal Contracts . . . . . . . . 108 4.3.5 Wa’ad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4 Options in Islamic Finance . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4.1 Overview of Istijar . . . . . . . . . . . . . . . . . . . . . . . . 110 4.4.2 Concept of Urban . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.3 Arboon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.5 Fuqaha (jurists) Viewpoints on Conventional Derivative Instruments . 112 4.5.1 Futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.5.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.6 Back to Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.7 Islamic Business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5 The Volatility Surface 116 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2 Stochastic and Nonparametric Volatility Models . . . . . . . . . . . . 116 5.2.1 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2.2 Empirical Approaches . . . . . . . . . . . . . . . . . . . . . . 119 5.2.3 Nonparametric Estimation of the Skew . . . . . . . . . . . . . 119 5.3 The Deterministic Volatility Approach . . . . . . . . . . . . . . . . . 120 5.3.1 Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.2 Principle Component Analysis . . . . . . . . . . . . . . . . . . 124 5.3.3 The SVI Model . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3.4 The Quadratic Function for the ALSI Implied Volatility Surface 125 5.3.5 Volatility Term Structure . . . . . . . . . . . . . . . . . . . . 125 5.3.6 FX Delta and Strike Relationship . . . . . . . . . . . . . . . . 128 5.4 Vanna Volga and Implied Skews . . . . . . . . . . . . . . . . . . . . . 129 5.4.1 Vanna-Volga: From Theory to Market Practice . . . . . . . . 130 6 Vanilla Currency Exotic Options 131 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Digital Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.2.1 Where Binary Options are Used . . . . . . . . . . . . . . . . . 132 6.2.2 Pricing Cash-or-Nothing . . . . . . . . . . . . . . . . . . . . . 134 6.2.3 Pricing with a Skew . . . . . . . . . . . . . . . . . . . . . . . 135 4 6.3 Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.1 Types of Barrier Options . . . . . . . . . . . . . . . . . . . . . 137 6.3.2 Monitoring the Barrier . . . . . . . . . . . . . . . . . . . . . . 138 6.3.3 Pricing Barrier Options . . . . . . . . . . . . . . . . . . . . . . 139 6.3.4 Reverse Knockout . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.5 Parity Relationship . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.6 Behaviour of Barrier Options . . . . . . . . . . . . . . . . . . 143 6.3.7 Continuity Correction . . . . . . . . . . . . . . . . . . . . . . 143 6.3.8 The Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.3.9 Static Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.3.10 Pricing with the Binomial . . . . . . . . . . . . . . . . . . . . 147 6.3.11 Partial Time Barrier Options . . . . . . . . . . . . . . . . . . 149 6.4 One-Touch Digitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.5 No-Touch Digitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.6 Double Digital Options . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.7 Forward Start Options . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.7.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.7.2 Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.7.3 Peculiarities of Forward-Start Options . . . . . . . . . . . . . 156 6.7.4 Risk Parameters and Hedging FSO . . . . . . . . . . . . . . . 156 6.8 Cliquet/Ratchet Options . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.9 Lookback Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.10 Asian Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.10.1 Uses in the FX Markets . . . . . . . . . . . . . . . . . . . . . 160 6.10.2 Fixed Strike Arithmetic Average Options . . . . . . . . . . . . 160 6.10.3 The Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.10.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.10.5 Floating Strike Arithmetic Average Options . . . . . . . . . . 163 6.10.6 In-Out Asian Options . . . . . . . . . . . . . . . . . . . . . . 163 7 Complex Currency Derivatives 165 7.1 Roll Up Puts and Roll Down Calls . . . . . . . . . . . . . . . . . . . 165 7.1.1 Ladder Options . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.2 Variance Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.2.1 How it Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.2.2 Variance Swap Pricing in Theory . . . . . . . . . . . . . . . . 175 7.2.3 Pricing in Practice . . . . . . . . . . . . . . . . . . . . . . . . 177 7.2.4 Limit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.2.5 Volatility Indices . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.2.6 VIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.2.7 SAVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.3 Range Accruels and Corridors . . . . . . . . . . . . . . . . . . . . . . 184 5 7.4 Quantos or Currency Translated Options . . . . . . . . . . . . . . . . 195 8 Implied Binomial Trees 205 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 8.2 Questions to be Considered . . . . . . . . . . . . . . . . . . . . . . . 206 8.3 Local Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.3.1 Dupire’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.4 Implied Binomial Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6 List of Figures 1.1 Information necessary to price an option. . . . . . . . . . . . . . . . . 17 1.2 The correct interest rates for a currency option. . . . . . . . . . . . . 19 1.3 Volatility surfaces for currencies. . . . . . . . . . . . . . . . . . . . . . 29 1.4 Different shape currency skews. . . . . . . . . . . . . . . . . . . . . . 32 1.5 The smile for the BRLEUR which is not symmetrical. . . . . . . . . . 33 1.6 The USDZAR market fitted at-the-money volatility term structure during February 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.7 USDZAR volatility surface during February 2011. . . . . . . . . . . . 36 1.8 The binomial distribution is the discrete version of the normal distri- bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.9 Five step tree [Ha 07]. . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.1 The Delta of a call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2 The Delta as a function of the time to expiry. . . . . . . . . . . . . . 44 2.3 Delta hedging a put. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4 The basis for a currency futures contract. . . . . . . . . . . . . . . . . 47 2.5 The gamma of an option. . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6 Calculating the Impact Delta . . . . . . . . . . . . . . . . . . . . . . 55 2.7 VBA pseudo-code for calculating Impact Delta. . . . . . . . . . . . . 55 2.8 Calculating the Impact Gamma . . . . . . . . . . . . . . . . . . . . . 57 2.9 VBA pseudo-code for calculating Impact Gamma. . . . . . . . . . . . 57 2.10 ThedistributionofUSDZARandEURUSD.Thefattailsandskewness is clearly visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.11 Historical volatilities for USDZAR and USDKES . . . . . . . . . . . . 69 3.1 Lines show 3.5 standard deviations from the mean. . . . . . . . . . . 86 3.2 Initial margin calculation for the USDZAR and GBPZAR futures con- tracts during February 2011. . . . . . . . . . . . . . . . . . . . . . . . 88 3.3 Future and spot convergence. . . . . . . . . . . . . . . . . . . . . . . 93 3.4 The clearing house (Safcom) becomes guarantor to each trade — the process of novation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.5 Marking-to-market and variation margin. . . . . . . . . . . . . . . . . 97 3.6 Yield-X Can-Dos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7