ebook img

For screen PDF

39 Pages·2011·0.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview For screen

Geometry & Topology15(2011)2235–2273 2235 Rigidity of spherical codes HENRY COHN YANG JIAO ABHINAV KUMAR SALVATORE TORQUATO Apackingofsphericalcapsonthesurfaceofasphere(thatis,asphericalcode)is calledrigidorjammedifitisisolatedwithinthespaceofpackings. Inotherwords, aside from applying a global isometry, the packing cannot be deformed. In this paper,wesystematicallystudytherigidityofsphericalcodes,particularlykissing configurations. OnesurpriseisthatthekissingconfigurationoftheCoxeter–Todd latticeisnotjammed,despitebeinglocallyjammed(eachindividualcapisheldin placeifitsneighborsarefixed);inthisrespect,theCoxeter–Toddlatticeisanalogous totheface-centeredcubiclatticeinthreedimensions. Bycontrast,wefindthatmany otherpackingshavejammedkissingconfigurations,includingtheBarnes–Walllattice andallofthebestkissingconfigurationsknowninfourthroughtwelvedimensions. Jammingseemstobecomemuchlesscommonforlargekissingconfigurationsin higherdimensions,andinparticularitfailsforthebestkissingconfigurationsknown in 25 through 31 dimensions. Motivatedbythisphenomenon,wefindnewkissing configurationsinthesedimensions,whichimproveontherecordssetin1982bythe laminatedlattices. 52C25;52C17 1 Introduction One of the key qualitative properties of a packing is whether it is jammed, that is, whethertheparticlesarelockedintoplace. Jammingisofobviousscientificimportance ifweareusingthepackingtomodelagranularmaterial. Furthermore,itplaysacentral roleinstudyinglocaloptimalityofpackings,becauseonenaturalwaytotrytoimprove apackingistodeformitsoastoopenupmorespace. Jamming has been extensively studied for packings in Euclidean space. See, for example,TorquatoandStillinger[44]andthereferencescitedtherein. However,ithas been less thoroughly investigated in other geometries. In this paper, we investigate jamming for sphere packings in spherical geometry, that is, packings of caps on the Published: 23November2011 DOI:10.2140/gt.2011.15.2235 2236 HenryCohn,YangJiao,AbhinavKumarandSalvatoreTorquato surfaceofasphere. Jamminghaspreviouslybeenstudiedforspherepackingsin S2 (seeTarnaiandGáspár[41]),butthereseemstohavebeenlittleinvestigationinhigher dimensions. Apackingofcongruentsphericalcapsontheunitsphere Sn(cid:0)1 in Rn yieldsaspherical code(thatis,afinitesubsetof Sn(cid:0)1)consistingofthecentersofthecaps. Theminimal distanceofsuchacodeisthesmallestangularseparationbetweendistinctpointsinthe code. In otherwords,the cosineofthe minimaldistanceisthe greatestinnerproduct betweendistinctpointsinthecode. Thepackingradiusishalftheminimaldistance, becausesphericalcapsofthisradiuscenteredatthepointsofthecodewillnotoverlap, excepttangentially. Asphericalcodeisoptimalifitsminimaldistanceisaslargeas possible,giventhedimensionofthecodeandthenumberofpointsitcontains. (Note thatthisnotionofoptimalityisdifferentfromrequiringthatnomorecapsofthesame sizecanbeaddedwithoutcausingoverlap. Neitherofthesetwonotionsimpliesthe other.) Sphericalcodesarisenaturallyinmanypartsofmathematicsandscience(seeCohn[9] foramoreextensivediscussion). Forexample,in R3 theymodelporesinpollengrains orcolloidalparticlesadsorbingtothesurfaceofadropletinaemulsionformedbytwo immiscibleliquids. Inhigherdimensions,theycanbeusedaserror-correctingcodes foraconstant-powerradiotransmitter. Furthermore,manybeautifulsphericalcodes ariseinLietheory,discretegeometry,orthestudyofthesporadicfinitesimplegroups. Adeformationofasphericalcodeisacontinuousmotionofthepointssuchthatthe minimaldistanceneverdropsbelowitsinitialvalue. Adeformationisanunjammingif itdoesnotsimplyconsistofapplyingglobalisometries(thatis,thepairwisedistances do not all remain constant). A spherical code is called rigid or jammed if it has no unjamming. Itiscalledlocallyjammed ifnosinglepointcanbecontinuouslymoved whilealltheothersareheldfixed. Forexample,intheface-centeredcubicpackingofballsin R3,thekissingconfiguration (thatis,pointsoftangencyonagivenball)consistsoftheverticesofacuboctahedron. Thiscodeislocallyjammed,butitisnotinfactjammed(seeConwayandSloane[19, page 29] or Proposition 3.5 below). However, it can be deformed into an optimal spherical code, namely the vertices of a regular icosahedron, and the icosahedron is thenarigidcodewithahigherminimaldistancethanthatofthecuboctahedron. As this example shows, deforming a spherical code is one way to improve it. Some optimal codes are not jammed; for example, the best five-point codes in S2 consist oftwoantipodal pointsandthreepointsorthogonalto them,andthethreepoints can movefreelyaslongastheyremainseparatedbyatleastanangleof (cid:25)=2. Furthermore, computerexperimentssuggestthatanoptimalcodecanhaverattlers,thatis,pointsnot Geometry & Topology,Volume15(2011) Rigidityofsphericalcodes 2237 incontactwithanyotherpoint,althoughnosuchcasehaseverbeenrigorouslyanalyzed. However,despitetheseissues,rigidityisapowerfulcriterionforunderstandingwhena codecanbeimproved. Note that whether a configuration is jammed depends on the ambient space. For example,theverticesofasquarearejammedin S1 butnotin S2. For infinite packings in Euclidean space, there are more subtle distinctions between differenttypesofjamming(seeBezdek,BezdekandConnelly[7]andTorquatoand Stillinger[43])basedonwhatsortsofmotionsareallowed. Forexample,areallbut finitely many particles held fixed? Are shearing motions allowed? However, these issuesdonotariseforpackingsincompactspaces. Nevertheless, jamming seemsto bea moresubtle phenomenonon spheresthan itis in Euclideanspace. InEuclideanspace,thereisanefficientalgorithmtotestforjamming (see Donev, Torquato, Stillinger and Connelly [21]) but on spheres we do not know such an algorithm. The difficulty is caused by curvature, which complicates certain arguments. Forexample,inEuclideanspaceeveryinfinitesimalunjammingextendsto anactualunjamming,aswewillexplaininSection2,butthecorrespondingprocedure doesnotworkonspheres. Oncewehavedevelopedthebasictheoryofrigidityforsphericalcodes,wewilldevote therestofthispapertoapplyingittoanalyzespecificcodes. Wewillfocusprimarily onkissingconfigurations(that is,sphericalcodeswithminimal angle atleast (cid:25)=3,or equivalentlythepointsoftangencyinEuclideanspacepackings),becausetheyforma rich classof spherical codes andinclude many of themost noteworthy examples. An optimalkissingconfigurationisonewiththelargestpossiblesizeinitsdimension. Asmentionedabove,theface-centeredcubickissingconfigurationisnotrigid,butwe willprovethatalloftheotherbestconfigurationsknowninuptotwelvedimensionsare rigid. Alongtheway,wewillproducewhatmaybethefirstexhaustiveenumerationof theseconfigurationsinuptoeightdimensions,aswellasacompletelistoftheknown examplesinninethroughtwelvedimensions(althoughwesuspectthatmoreremain to be discovered). Above twelve dimensions, the calculations become increasingly difficult to do, even by computer, but we analyze certain cases that are susceptible toconceptualarguments. Inparticular,weshowthatthekissingconfigurationofthe Coxeter–Todd lattice K is not rigid, while that of the Barnes–Wall lattice ƒ is, 12 16 althoughbothlatticesareconjecturedtobeoptimalspherepackingsintheirdimensions. We particularly focus our attention on 25 through 31 dimensions, because of the remarkablysmallincreasesintherecordkissingnumbersfromeachdimensiontothe next(seeTable3inSection7fortheoldrecords). Thebestconfigurationspreviously Geometry & Topology,Volume15(2011) 2238 HenryCohn,YangJiao,AbhinavKumarandSalvatoreTorquato Dimension Kissingnumber Dimension Kissingnumber 1 2 17 5346 2 6 18 7398 3 12 19 10668 4 24 20 17400 5 40 21 27720 6 72 22 49896 7 126 23 93150 8 240 24 196560 9 306 25 197040 10 500 26 198480 11 582 27 199912 12 840 28 204188 13 1154 29 207930 14 1606 30 219008 15 2564 31 230872 16 4320 32 276032 Table1: Thebestlowerboundsknownforkissingnumbersinuptothirty-two dimensions. Numbersinboldareknowntobeoptimal(seeSchütteandvan derWaerden[39],Levenšte˘ın[29],OdlyzkoandSloane[36]andMusin[34]). knownwerenotevenlocallyjammed,butweseenosimplewaytodeformthemsoas toincreasethekissingnumber. However,inSection7weshowhowtoimproveonthe knownrecords. Wegiveasimpleargumentthatshowshowtobeatthem,aswellasa more complicated construction that makes use of a computer search to optimize the resultingbounds. The new records are shown in Table 1. It is taken from Conway and Sloane [19, page xxi, Table I.2(a)], with three exceptions: the entry for R15 was out of date in thattable(see[19,Chapter5,Section4.3]),theentriesfor R13 and R14 comefrom ZinovievandEricson[46],andtheentriesfor R25 through R31 arenewresultsinthe presentpaper. SeealsoNebeandSloane[35]. Forthebestupperboundsknowninup totwenty-fourdimensions,seeMittelmannandVallentin[32]. Figure1showsalogarithmicplotofthedatafromTable1,normalizedforcomparison with 32 dimensions. Onecanseethelocalmaximacorrespondingtotheremarkable E ,Barnes–WallandLeechlatticesindimensions 8, 16 and 24,respectively. Note 8 also that the growth rate of the known kissing numbers drops dramatically after 24 dimensions. Geometry & Topology,Volume15(2011) Rigidityofsphericalcodes 2239 log(cid:28) (cid:0) n log(cid:28) n 32 32 3 2 1 0 n 1 8 16 24 32 Figure1: Aplotof log(cid:28) (cid:0) n log(cid:28) ,where (cid:28) denotesthecurrentrecord n 32 32 n kissingnumberin Rn 2 Infinitesimal jamming We know of no efficient way to test whether a given spherical code is jammed. In principle,itcanbedonebyafinitecalculation,atleastifthepointsinthecodehave algebraic numbers as coordinates, by using quantifier elimination for the first-order theoryoftherealnumbers(seeTarski[42]). (TheproofreliesonRothandWhiteley[38, Proposition3.2].) However,quantifiereliminationisnotpracticalinthiscase. On the other hand, there are much more efficient tests for a related concept called infinitesimal jamming,using linear programming(see Donev, Torquato, Stillinger and Connelly[21]). Givenacode fx ;:::;x g(cid:26)Sn(cid:0)1,imagineperturbing x to x C"y . 1 N i i i Then jx C"y j2D1C2hx ;y i"CO."2/; i i i i where h(cid:1);(cid:1)i denotestheinnerproduct,and hx C"y ;x C"y iDhx ;x iC.hx ;y iChx ;y i/"CO."2/: i i j j i j i j j i Thus,topreservealltheconstraintsuptofirstorderin ",wemusthave hx ;y iD0 for i i all i,and hx ;y iChx ;y i(cid:20)0 whenever hx ;x i equalsthemaximalinnerproduct i j j i i j in the code. An infinitesimal deformation of the code fx ;:::;x g is a collection 1 N of vectors y ;:::;y satisfying these constraints. It is an infinitesimal rotation if 1 N thereexistsaskew-symmetricmatrix ˆ2Rn(cid:2)n suchthat y Dˆx forall i,anda i i code is infinitesimally jammed if every infinitesimal deformation is an infinitesimal rotation. (Recallthattheskew-symmetricmatricesareexactlythoseintheLiealgebra of SO.n/.) Notethatforaninfinitesimalrotation, hx ;y iDhx ;ˆx iD(cid:0)hˆx ;x iD(cid:0)hx ;y i: i j i j i j j i Geometry & Topology,Volume15(2011) 2240 HenryCohn,YangJiao,AbhinavKumarandSalvatoreTorquato Thus, an infinitesimal rotation does not change any distances, up to first order. The converse is false (consider a square on the equator in S2, with an infinitesimal de- formationmovingtwooppositecornersupandtheothertwodown),butitistruefor full-dimensionalcodes: Lemma2.1 Let y ;:::;y beaninfinitesimaldeformationofacode fx ;:::;x g 1 N 1 N in Sn(cid:0)1 such that x ;:::;x span Rn. If hx ;y iChx ;y i D 0 for all i and j, 1 N i j j i thenthedeformationisaninfinitesimalrotation. Proof First,notethatifalinearcombination P ˛ x vanishes,then P ˛ y D0 as i i i i i i well,because (cid:28) (cid:29) X X ˛ y ;x D ˛ hy ;x i i i j i i j i i X D(cid:0) ˛ hx ;y i i i j i (cid:28) (cid:29) X D(cid:0) ˛ x ;y i i j i D(cid:0)h0;y iD0 j forall j (andonlythezerovectorisorthogonaltoasetthatspans Rn). Thus,thereis awell-definedlinearmap ˆ suchthat ˆx Dy . Furthermore,theidentity i i hx ;ˆx iDhx ;y iD(cid:0)hy ;x iD(cid:0)hˆx ;x i i j i j i j i j implies that ˆ is skew-symmetric, because it holds for a basis of Rn and hence hu;ˆviD(cid:0)hˆu;vi forall u;v2Rn. Everyinfinitesimallyjammedcodeisinfactjammed. Thisisnotobvious: onecannot simplydifferentiateapurportedunjammingmotiontogetaninfinitesimalunjamming, withoutdealingwithtwotechnicalities,namelywhetherthereisadifferentiableunjam- mingandwhathappensifallthefirst-orderderivativesvanish. However,itistrue,as pointedoutbyConnelly[13,Remark4.1]andbyRothandWhiteley[38,Theorem5.7]: Theorem2.2 (Connelly,RothandWhiteley) Everyinfinitesimallyjammedspherical codeisjammed. Thecitedpapersdealwiththemoregeneralsettingoftensegrityframeworks,inwhich movablepointscanbeconnectedbybars(withfixedlengths),cables(withspecified maximum lengths) or struts (with specified minimum lengths), and they prove that Geometry & Topology,Volume15(2011) Rigidityofsphericalcodes 2241 infinitesimaljammingimpliesjamminginthissetting. Forthespecialcaseofspherical codes,weconnecteachpointinthecodetotheoriginusingabar,andweinsertstruts betweenneighboringpoints(thatis,thoseattheminimaldistance). Wedonotknowwhethereveryjammedsphericalcodethatspanstheambientspace is infinitesimally jammed. For tensegrity frameworks, the corresponding statement is not true: if we place bars along the edges of a regular octahedron, and use two additionalbarstoconnectitscenterwithapairofoppositevertices,thentheframework is rigid, but flexing the center orthogonally to the two adjacent bars is a nontrivial infinitesimal deformation. We have not found such an example for spherical codes, but we expect that there is one. By contrast, infinitesimal jamming is equivalent to jammingforperiodicpackingsinEuclideanspace(seeDonev,Torquato,Stillingerand Connelly[21]). Specifically,ifweperturb x to xC"y and x0 to x0C"y0,then j.xC"y/(cid:0).x0C"y0/j2Djx(cid:0)x0j2C2hx(cid:0)x0;y(cid:0)y0i"Cjy(cid:0)y0j2"2: Thesecond-ordertermisalwaysnonnegative,sononnegativityofthefirst-orderterm sufficestoproduceanactualunjamming. (Deformingtheunderlyinglatticecomplicates theanalysis, butthe resultremainstrue; see[21, Appendix C].)Whatgoes wrongin the spherical case is that xC"y is no longer a unit vector and must be normalized, whichcausesthedistancestodecrease. This is not merely a technicality: there seems to be no simple method to turn an infinitesimalunjammingintoanactualunjamming. Nevertheless,inallourexamples, wehavebeenabletoaccomplishthis(withsomeeffort). Thelinearprogrammingalgorithmforinfinitesimalrigiditytestingworksasfollows. By Lemma 2.1, to test whether a full-dimensional code is infinitesimally jammed, we need only check for each pair of points whether the distance between them can be changed. In other words, in an infinitesimal deformation, are the maximum and minimumof hx ;y iChx ;y i zeroforall i and j? Foreach i and j,thisgivesrise i j j i totwolinearprogrammingproblems,becauseweareimposinglinearconstraintson theperturbationvectors y ;:::;y andmaximizingorminimizingthelinearfunction 1 N hx ;y iChx ;y i. (Of course, when hx ;x i is maximal in the code, the definition i j j i i j of an infinitesimal deformation requires that hx ;y iChx ;y i(cid:20)0, so maximizing i j j i thislinearfunctionalistrivial. However,theothercasesarenontrivial.) Thecodeis infinitesimallyjammedifandonlyiftheoptimainalltheselinearprogramsarezero. If not,thensolvingthelinearprogramswillproduceaninfinitesimalunjamming,provided that we also bound the coordinates of the perturbation vectors (to avoid unbounded linearprograms). Insomecasesweareaidedbysymmetry,becauseweonlyneedtocheckonerepresenta- tivefromeachorbitoftheactionofthecode’ssymmetrygrouponpairsofpointsinthe Geometry & Topology,Volume15(2011) 2242 HenryCohn,YangJiao,AbhinavKumarandSalvatoreTorquato code. Forexample,ifthesymmetrygroupactsdistance-transitively,thenweonlyneed tocheckonepairofpointsateachdistance. UsingtheapproachofDonev,Torquato, StillingerandConnelly[21], wecanevenreducetosolvingonelinearprogram, atthe costofrandomization. Specifically,considermaximizingthelinearcombination X ci;j.hxi;yjiChxj;yii/; i;j wherethecoefficients ci;j arechosenrandomlyfromtheinterval Œ(cid:0)1;1(cid:141). Withproba- bility 1,thisapproachwillproduceaninfinitesimalunjammingifoneexists. Thus,if theoptimumiszero,thenwecanbeconfidentthatthecodeisjammed,althoughthis doesnotconstituteaproof. For mostof theexamples inthispaper, wegiveshort conceptualproofsof jamming. However, forsome caseswe mustrely oncomputercalculations. In thesecases, we havegivenrigorous,computer-assistedproofsbyusingexactrationalarithmeticviathe QSopt_exlinearprogrammingsoftwareofApplegate,Cook,DashandEspinoza[1] andcheckingeverypairofpointsinthecode. 3 The kissing configurations of root lattices We begin by proving that the root systems D (for n(cid:21)4) and E , E and E are n 6 7 8 infinitesimally jammed, while A is not jammed (for n (cid:21) 3). Note that these root n systemsarethekissingconfigurationsofthecorrespondingrootlattices. p In this section, we will use spheres of diameter 2 instead of 1, because that is standard for these root systems and makes the inner products integral. Note that the theoryofinfinitesimaljamminginnowaydependsonthisnormalization. Thefollowingelementarylemmawillplayakeyroleintheproofs: Lemma3.1 Let C and D besphericalcodeswith C (cid:18)D andwiththesameminimal distance. If C isinfinitesimallyjammedwithinthevectorspaceitspans,theninany infinitesimaldeformationof D,theinnerproductsbetweenpointsin C areunchanged (uptofirstorder). Theinterestingcaseiswhen C islowerdimensionalthan D. Proof Let x and y be points in C, and let u and v be their perturbations in an infinitesimaldeformationof D. Wewrite uDuCCu? and vDvCCv?,where uC and vC areinthespanof C while u? and v? areintheorthogonalcomplementofthe span. Geometry & Topology,Volume15(2011) Rigidityofsphericalcodes 2243 The orthogonal projections to the span of C yield an infinitesimal deformation of C. (Here we need C and D to have the same minimal distance, since otherwise the conditions on which inner products can increase will differ.) Thus, because C is infinitesimallyjammedwithinitsspan, hx;vCiChuC;yiD0. Furthermore, hx;v?iD hy;u?iD0. Itfollowsthat hx;viChu;yiD0,asdesired. Lemma3.2 The A rootsystemisinfinitesimallyjammed. 2 The A root system is a regular hexagon, and it is easy to show that every regular 2 polygonisinfinitesimallyjammed. Thissimpleobservationprovidesausefultoolfor analyzingmoreelaborateconfigurationsviaLemma3.1. Proposition3.3 The D rootsystemisinfinitesimallyjammed. 4 Proof The minimal vectors of D have norm 2 and the possible inner products 4 betweendistinctminimalvectorsare 0, ˙1 and (cid:0)2. First,notethattheautomorphism groupof D actstransitively onpairsofminimalvectors withagiveninner product, 4 sowithoutlossofgeneralitywecanconsiderjustonepairofpointsateachdistance. (Thistransitivityfailsfor D with n>4,becausetherearetwoorbitsforinnerproduct n 0,butthetrialitysymmetryof D collapsesthemtooneorbit.) 4 Furthermore, D contains A ,andbyLemma3.1thedistancesinacopyof A cannot 4 2 2 changebecause A isinfinitesimallyjammedwithinitsspan. Thistakescareofallthe 2 casesexceptforapairoforthogonalvectors. Wenowhavetoshowthatif hx;yiD0 then hx;yi doesnotchangeinanyinfinitesimal deformation. Againby thedistance transitivity ofthe automorphismgroup, wemay assume x D.1;1;0;0/ and y D.1;(cid:0)1;0;0/. Let uD.1;0;1;0/, v D.1;0;(cid:0)1;0/, w D .1;0;0;1/ and z D .1;0;0;(cid:0)1/ be other minimal vectors of D . Denote the 4 firstorderperturbationsof x;y;u;v;w;z by x0;y0;u0;v0;w0;z0. Notethat xCy D uCv D wCz, and that hx;ui D hx;vi D hy;ui D hy;vi D 1. Thus, by the A 2 embeddingargument,wehave hx;u0iChx0;uiD0; hy;u0iChy0;uiD0; hx;v0iChx0;viD0; hy;v0iChy0;viD0: Addingtheseequations,weget hxCy;u0Cv0iChx0Cy0;uCviD0; or(using xCy DuCv) huCv;u0Cv0iChx0Cy0;xCyiD0: Geometry & Topology,Volume15(2011) 2244 HenryCohn,YangJiao,AbhinavKumarandSalvatoreTorquato Sinceweknowthat hu;u0iD0,etc.,weget(denotingthefirstorderchange hu;v0iC hu0;vi in hu;vi by ı.u;v/) ı.u;v/Cı.x;y/D0: Similarly,wehave ı.u;v/Cı.w;z/D0; ı.w;z/Cı.x;y/D0: Fromthesethreeequations,elementaryalgebraimplies ı.x;y/Dı.u;v/Dı.z;w/D0. Thiscompletestheproof. Thelengthyargumentforthelastcaseamountstoverifyingthatasquareembedded within D cannotbeinfinitesimallydeformed. Notethatthiscannotsimplybesettled 4 usingLemma3.1,althoughthesquareisindeedjammedwithinitsspan,becausethe minimal distance in the square differs from that in D . If that argument worked, it 4 wouldalsoproveinfinitesimaljammingfor D ,whichisnottrue. (The A and D root 3 3 3 latticesareisomorphictotheface-centeredcubiclattice,whosekissing configuration isnotjammed.) Corollary3.4 The D rootsystem(for n(cid:21)4)andthe E , E and E rootsystems n 6 7 8 areinfinitesimallyjammed. Proof Theseconfigurationshavenorm 2 andinnerproducts 0, ˙1 and ˙2,thesame asin D . Wefirstdealwith E , E and E . Theirautomorphismgroupsactdistance 4 6 7 8 transitively,soitsufficestoconsiderasinglepairofpointsateachdistance. The D 4 root system embeds in each of these configurations (in fact, its Dynkin diagram is a subdiagram),sowithoutlossofgeneralitywecanassumethepairofpointsisin D . 4 NowcombiningLemma3.1andProposition3.3completestheproof. Thesameproofworksfor D with n>4,withoneexception,namelythattherearetwo n orbitsofpairsoforthogonalvectors,sothegroupdoesnotquiteactdistancetransitively. Specifically,thestabilizerof .1;1;0;:::;0/ cannotinterchange .1;(cid:0)1;0;:::;0/ and .0;0;1;1;0;:::;0/. However,inbothcases,thesevectorsarecontainedinacopyof D (namely, the one in the first four coordinates), so we can complete the proof as 4 before. The A root system is locally jammed, and for nD2 it is in fact jammed, but the n unjammingfor nD3 extendstohigherdimensions. Proposition3.5 For n(cid:21)3,the A rootsystemisnotjammed. n Geometry & Topology,Volume15(2011)

Description:
For example, in the face-centered cubic packing of balls in R. 3 .. The linear programming algorithm for infinitesimal rigidity testing works as follows.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.