ebook img

For printing PDF

12 Pages·2009·0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview For printing

Algebraic & Geometric Topology9(2009)265–275 265 Classification of string links up to self delta-moves and concordance AKIRA YASUHARA Foran n–componentstringlink,theMilnor’sconcordanceinvariantisdefinedfor each sequence I D i i (cid:1)(cid:1)(cid:1)i .i 2 f1;:::;ng/. Let r.I/ denote the maximum 1 2 m j numberoftimesthatanyindexappears. Weshowthattwostringlinksareequivalent uptoself (cid:129)–movesandconcordanceifandonlyiftheirMilnorinvariantscoincide forallsequences I with r.I/(cid:20)2. 57M25,57M27 1 Introduction For an n–component link L, the Milnor (cid:22)x–invariant (cid:22)x .I/ is defined for each L sequence I D i i (cid:1)(cid:1)(cid:1)i .i 2 f1;:::;ng/; see Milnor [13; 14]. Let r.I/ denote 1 2 m j the maximum number of times that any index appears. For example, r.1123/ D 2 and r.1231223/D3. It is known that if r.I/D1, then (cid:22)x .I/ is a link-homotopy L invariant[13],wherelink-homotopyisanequivalencerelationonlinksgeneratedby selfcrossingchanges. Similarly,forastringlink L,theMilnor (cid:22)–invariant (cid:22) .I/ L is defined; see Habegger and Lin [7]. Milnor (cid:22)–invariants give a link-homotopy classificationforstringlinks. 0 Theorem 1.1 [7] Two n–component string links L and L are link-homotopic if andonlyif (cid:22)L.I/D(cid:22)L0.I/ forany I with r.I/D1. Theorem1.1impliesthefollowing. Theorem1.2 [13;7] Alink L in S3 islink-homotopictothetriviallinkifandonly if (cid:22)x .I/D0 forany I with r.I/D1. L Although Milnor invariants for sequences I with r.I/(cid:21)2 are not necessarily link- homotopyinvariants,theyaregeneralizedlink-homotopyinvariants. Infact,TFleming andtheauthor[4,Theorem1.1]showedthat(cid:22)x–invariantsforsequencesI withr.I/(cid:20)k areself C –equivalenceinvariantsoflinksin S3,wheretheself C –equivalenceisan k k equivalencerelationon(string)linksgeneratedbyself C –moves,anda C –moveis k k Published: 13February2009 DOI:10.2140/agt.2009.9.265 266 AkiraYasuhara alocalmoveonlinksdefinedbyHabiro[9;10]. Thisstatementholdsfor (cid:22)–invariants of string links as well. The proof is the same as the one of [4, Theorem 1.1] except for usingProposition3.1insteadof[14,Theorem7]. Thelink-homotopycoincideswiththe self C –equivalence. The self C –equivalence coincides with the self (cid:129)–equivalence, 1 2 which is an equivalence relation generated by self (cid:129)–moves. A (cid:129)–move is a local move as illustrated in Figure 1; see Murakami and Nakanishi [15]. The (cid:129)–move is called a self (cid:129)–move if all strands in Figure 1 belong to the same component of a (string)link;seeShibuya[19]. (cid:129)–move Figure1 A self (cid:129)–equivalence classification of 2–component links was given by Y Nakanishi andYOhyama[16]andfor 2–componentstringlinksbyFlemingandtheauthor[3]. Itisstillopenfor(string)linkswithatleast3components. ThefollowingresultisageneralizationofTheorem1.2. Theorem1.3 [23,Corollary1.5] Alink L isself (cid:129)–equivalenttothetriviallinkif andonlyif (cid:22)x .I/D0 forany I with r.I/(cid:20)2. L In this paper, we generalizeTheorem 1.1 and give a certain geometric characterization forstring linkswhose (cid:22)–invariantscoincide forall sequences I with r.I/(cid:20)2. It is known that self (cid:129)–equivalence is too fine to give the characterization, ie, there are 2–component string links such that their (cid:22)–invariants vanish for all sequences I with r.I/(cid:20)2 andtheyarenotself (cid:129)–equivalenttothetrivialstringlink[3]. Since Milnor invariants are concordance invariants by Casson [1] and concordance does not imply self (cid:129)–equivalence by Nakanishi and Shibuya [17] and Nakanishi, ShibuyaandYasuhara[18],anequivalencerelationgeneratedbyconcordanceandself (cid:129)–movesislooserthantheself (cid:129)–equivalenceandpreservesMilnorinvariantsforall sequences I with r.I/(cid:20)2. Wedefinetheequivalencerelationasfollows. Two(string) links L and L0 areself–(cid:129) concordantifthereisasequence LDL ;:::;L DL0 of 1 m (string)linkssuchthatforeach i.2f1;:::;m(cid:0)1g), Li and LiC1 areeitherconcordant orself (cid:129)–equivalent. Algebraic & Geometric Topology,Volume9(2009) Classificationofstringlinksuptoselfdelta-movesandconcordance 267 Thefollowingisthemainresultofthispaper. Theorem1.4 Two n–componentstringlinks L and L0 areself–(cid:129) concordantifand onlyif (cid:22)L.I/D(cid:22)L0.I/ forany I with r.I/(cid:20)2. Foran n–componentstringlink L,let L.k/ bea kn–componentstringlinkobtained from L by replacing each component of L with k zero framed parallels of it. By combiningTheorem1.4andProposition3.2,wehavethefollowingcorollary. Corollary1.5 Twostringlinks L and L0 areself–(cid:129) concordantifandonlyif L.2/ and L0.2/ arelink-homotopic. Let SL.n/ be the set of n–component string links, and let SL.n/=.s(cid:129)Cc/ (resp. SL.n/=C )bethesetofself–(cid:129) concordanceclasses(resp.thesetof C –equivalence m m classes). Habiro showed that SL.n/=C is a nilpotent group [10, Theorem 5.4]. m Since C –equivalence for n–component (string) links implies self (cid:129)–equivalence [4, 2n Lemma1.2],wehavethat SL.n/=.s(cid:129)Cc/ isanilpotentgroup. Moreover,sincethe firstnonvanishing (cid:22)–invariantsareadditiveunderthestackingproduct(forexamplesee Cochran [2] and Habegger and Masbaum [8]), by Theorem 1.4, we have the following proposition. Proposition1.6 Thequotient SL.n/=.s(cid:129)Cc/ formsatorsion–freenilpotentgroup underthestackingproduct. Acknowledgments The author would like to thank Professor Nathan Habegger and Professor Uwe Kaiser for many useful discussions which inspired him to consider the equivalence relation generated by self (cid:129)–moves and concordance. He is also very gratefultoProfessorJonathanHillmanforhelpfulcomments. Heispartiallysupported by a Grant-in-Aid for Scientific Research (C) (#20540065) of the Japan Society for thePromotionofScience. 2 String links and Milnor invariants In this section, we summarize the definitions of string links and Milnor invariants of linksandstringlinks. AstringlinkisageneralizationofapurebraiddefinedbyHabeggerandLin[7]. Algebraic & Geometric Topology,Volume9(2009) 268 AkiraYasuhara 2.1 Stringlinks Let D be the unit disk in the plane and let I DŒ0;1(cid:141) be the unit interval. Choose n points p ;:::;p intheinteriorof D sothat p ;:::;p lieinorderonthe x–axis, 1 n 1 n seeFigure2. An n–componentstringlink LDK [(cid:1)(cid:1)(cid:1)[K in D(cid:2)I isadisjoint 1 n union of oriented arcs K ;:::;K such that each K runs from .p ;0/ to .p ;1/ 1 n i i i .i D 1;:::;n/. A string link K [(cid:1)(cid:1)(cid:1)[K with K D fp g(cid:2)I .i D 1;:::;n/ is 1 n i i calledthe n–componenttrivialstringlink anddenotedby 1 . Forastringlink L in n D(cid:2)I, the closure cl.L/ of L is a link in S3 obtained from L by identifying points of @.D(cid:2)I/ withtheirimagesundertheprojection D(cid:2)I (cid:0)!D. Itiseasytoseethat everylinkistheclosureofsomestringlink. Milnor defined in [13; 14] a family of invariants of oriented, ordered links in S3, knownasMilnor (cid:22)x–invariants. 2.2 Milnorinvariantsoflinks Givenan n–componentlink LDK [(cid:1)(cid:1)(cid:1)[K in S3,denoteby G thefundamental 1 n group of S3 nL, and by G the q–th subgroup of the lower central series of G. q Wehaveapresentationof G=G with n generators,givenbyameridian ˛ ofeach q i component K . So,for each j 2f1;:::;ng,thelongitude l ofthe j–thcomponent i j of L is expressed modulo G as a word in the ˛ ’s (abusing notation, we still denote q i this word by l ). The Magnus expansion E.l / of l is the formal power series j j j in noncommuting variables X ;:::;X obtained by substituting 1CX for ˛ and 1 n i i 1(cid:0)Xi CXi2(cid:0)Xi3C(cid:1)(cid:1)(cid:1) for ˛i(cid:0)1, i D1;:::;n. Let I Di1i2(cid:1)(cid:1)(cid:1)ik(cid:0)1j .k (cid:20)q/ be a sequence in f1;:::;ng. Denote by (cid:22) .I/ the coefficient of X (cid:1)(cid:1)(cid:1)X in the L i1 ik(cid:0)1 Magnusexpansion E.l /. Milnor (cid:22)x–invariant (cid:22)xL.I/ istheresidueclassof (cid:22) .I/ j L modulothegreatestcommondivisorofall (cid:22) .J/ suchthat J isobtainedfrom I by L removingatleastoneindex,andpermutatingtheremainingindicescyclicly. In [7], Habegger and Lin define the Milnor invariants of string links. We also refer the readertoHabeggerandMasbaum[8]. 2.3 Milnorinvariantsofstringlinks In the unit disk D, we chose a point e 2@D and loops ˛ ;:::;˛ as illustrated in 1 n Figure2. Foran n–componentstringlink LDK [(cid:1)(cid:1)(cid:1)[K in D(cid:2)I with @K D 1 n j f.p ;0/;.p ;1/g.jD1;:::;n/,setY D.D(cid:2)I/nL,Y D.D(cid:2)f0g/nL,andY D.D(cid:2) j j 0 1 f1g/nL. Wemayassumethateach (cid:25) .Y /.t2f0;1g/ withbasepoint .e;t/ isthefree 1 t group F.n/ ongenerators ˛ ;:::;˛ . Wedenotetheimageof ˛ inthelowercentral 1 n j seriesquotient F.n/=F.n/ againby ˛ . ByStallings’theorem[22],theinclusions q j Algebraic & Geometric Topology,Volume9(2009) Classificationofstringlinksuptoselfdelta-movesandconcordance 269 e p p p 1 2 n ˛ ˛ ˛ 1 2 n Figure2 itW Yt (cid:0)! Y induce isomorphisms .it/(cid:3)W (cid:25)1.Yt/=(cid:25)1.Yt/q (cid:0)! (cid:25)1.Y/=(cid:25)1.Y/q for any positive integer q. Hence the induced map .i1/(cid:0)(cid:3)1ı.i0/(cid:3) is an automorphism of F.n/=F.n/ and sends each ˛ to a conjugate l ˛ l(cid:0)1 of ˛ , where l is the q j j j j j j longitude of K defined asfollows. Let (cid:13) be azero framedparallel of K such that j j j theendpoints .c ;t/2D(cid:2)ftg.t D0;1/ lieonthe x–axisin R2(cid:2)ftg. Thelongitude j l 2F.n/=F.n/ isanelementrepresentedbytheunionofthearc (cid:13) andthesegments j q j e (cid:2) I, cje (cid:2) f0;1g under .i1/(cid:0)(cid:3)1. The coefficient (cid:22)L.i1i2(cid:1)(cid:1)(cid:1)ik(cid:0)1j/ .k (cid:20) q/ of X (cid:1)(cid:1)(cid:1)X in the Magnus expansion E.l / is well-defined invariant of L, and it is i1 ik(cid:0)1 j calledaMilnor (cid:22)–invariant of L. 3 Proof of Theorem 1.4 Byanargumentsimilartothatintheproofof[14,Theorem7],wehavethefollowing proposition. Proposition3.1 (cf[14,Theorem7]) Let L0 .j D1;2/ bean l–componentstring j linkobtainedfroman n–componentstringlink L byreplacingeachcomponentof L j j 0 0 withzeroframedparallelsofit. Supposethatthe i–thcomponentsof L and L corre- 1 2 spondtothe h.i/–thcomponentsof L and L respectively. Forasequence i i (cid:1)(cid:1)(cid:1)i 1 2 1 2 m ofintegersin f1;2;:::;lg, (cid:22)L0.I/D(cid:22)L0.I/ foranysubsequence I of i1i2(cid:1)(cid:1)(cid:1)im if 1 2 andonlyif (cid:22) .J/D(cid:22) .J/ foranysubsequence J of h.i /h.i /(cid:1)(cid:1)(cid:1)h.i /. L1 L2 1 2 m Remark Itisshownthatforalink L0 in S3 obtainedfromalink L bytakingzero 0 framed parallels of the components of L, if the i–th component of L corresponds tothe h.i/–thcomponent of L,then (cid:22)xL0.i1i2(cid:1)(cid:1)(cid:1)im/D(cid:22)xL.h.i1/h.i2/(cid:1)(cid:1)(cid:1)h.im// [14, Theorem 7]. Although this looks stronger than the proposition above, it holds for the residue class (cid:22)x. It does not hold for (cid:22)–invariant of string links. In fact, there is the Algebraic & Geometric Topology,Volume9(2009) 270 AkiraYasuhara following example: Let L be the 2–component string link illustrated in Figure 3 and 0 L the3–componentstringlinkillustratedinFigure3,whichisobtainedfrom L by taking two zero framed parallels of the first component. Note that h.1/Dh.2/D1 1 2 1 2 3 L L0 Figure3 and h.3/D2. ThentheMagnusexpansionofthe2ndlongitudeof L is 1CX and 1 the expansion of the 3rd longitude of L0 is 1CX CX CX X . Hence we have 2 1 1 2 (cid:22)L.112/¤(cid:22)L0.123/. Proof It is enough to consider the special case where L0 .j D1;2/ is an .nC1/– j component string link obtained from an n–component string link L by replacing the j n–thcomponentofL withtwoparallelsofit. Wemayassumethatthetwoparallelsare j containedinatubularneighborhood N ofthe n–thcomponentof L . Thenthereisthe j j naturalhomomorphismfrom (cid:25) .E /.Š(cid:25) .E nN // to (cid:25) .E0/,where E and E0 1 j 1 j j 1 j j j arethecomplementsof L and L0 respectively. The i–thlongitudes l .iD1;:::;n/ j j ji of L maptothe i–thlongitudes l0 of L0 ,the i–thmeridians ˛ .i D1;:::;n(cid:0)1/ j ji j ji of L map to the i–th meridians ˛0 of L0 , and the n–th meridian ˛ maps to j ji j jn ˛0 ˛0 . Notethat l0 isequalto l0 . TheMagnusexpansion M.l0 / of l0 can jn jnC1 jnC1 jn ji ji beobtainedfromtheexpansion X M.ljh.i//D1C (cid:22)Lj.h1(cid:1)(cid:1)(cid:1)hsh.i//Xh1(cid:1)(cid:1)(cid:1)Xhs bysubstituting M.˛j0n˛j0nC1/(cid:0)1DXnCXnC1CXnXnC1 for Xn. Hence,if (cid:22)L1.J/D(cid:22)L2.J/ foranysubsequence J of h.i1/(cid:1)(cid:1)(cid:1)h.im/,then (cid:22)L01.I/D (cid:22)L0.I/ for anysubsequence of i1(cid:1)(cid:1)(cid:1)im. Recallthat h.i/Di .i D1;:::;n(cid:0)1/ and 2 h.n/Dh.nC1/Dn. Ontheotherhand,supposethatthereisasubsequence Jh of h.i /(cid:1)(cid:1)(cid:1)h.i / suchthat 1 m (cid:22) .Jh/ ¤ (cid:22) .Jh/. We may assume that the length of J is minimal among all L1 L2 such subsequences, ie, for any subsequence J0.¤J/ of J, (cid:22) .J0h/D(cid:22) .J0h/. L1 L2 Let k (cid:1)(cid:1)(cid:1)k k be a subsequence of i (cid:1)(cid:1)(cid:1)i with h.k /(cid:1)(cid:1)(cid:1)h.k /DJ and h.k/Dh. 1 t 1 m 1 t Note that (cid:22)Lj0.k1(cid:1)(cid:1)(cid:1)ktk/ might not be equal to (cid:22)Lj.Jh/ (if k1(cid:1)(cid:1)(cid:1)kt contains the Algebraic & Geometric Topology,Volume9(2009) Classificationofstringlinksuptoselfdelta-movesandconcordance 271 pattern n.nC1/). SincetheMagnusexpansion M.l0 / canbeobtainedfrom M.l / jk jh bysubstituting XnCXnC1CXnXnC1 for Xn,thereisaset SJ,possibly SJ DfJg, ofsubsequencesof J suchthat (cid:22)Lj0.k1(cid:1)(cid:1)(cid:1)ktk/D X (cid:22)Lj.J0h/.j D1;2/: J02SJ Theminimalityof J implies (cid:22)L01.k1(cid:1)(cid:1)(cid:1)ktk/(cid:0)(cid:22)L02.k1(cid:1)(cid:1)(cid:1)ktk/D(cid:22)L1.Jh/(cid:0)(cid:22)L2.Jh/¤0: Thiscompletestheproof. BycombiningTheorem1.1andProposition3.1,wehavethefollowingcharacterization forstringlinkswhose (cid:22)–invariantscoincideforallsequences I with r.I/(cid:20)k. Proposition 3.2 (cf [2, Proposition 9.3]) Let L and L be n–component string 1 2 links and k a natural number. Let L .k/ be a kn–component string link obtained j from L by replacing each component of L with k zero framed parallels of it j j .j D1;2/. Thenthefollowingareequivalent: (1) (cid:22) .J/D(cid:22) .J/ forany J with r.J/(cid:20)k. L1 L2 (2) (cid:22)L1.k/.I/D(cid:22)L2.k/.I/ forany I with r.I/D1. (3) L .k/ and L .k/ arelink-homotopic. 1 2 Proof Theorem1.1implies“(2),(3)”. Weonlyneedtoshow“(1),(2)”. Suppose that the i–th components of L .k/ and L .k/ correspond to the h.i/–th 1 2 componentsof L and L respectively. Forasequence I Di i (cid:1)(cid:1)(cid:1)i ofintegersin 1 2 1 2 m f1;2;:::;nkg,let h.I/ denote h.i /h.i /(cid:1)(cid:1)(cid:1)h.i /. 1 2 m (1))(2) Let I be a sequence of integers in f1;2;:::;nkg with r.I/D1. Since r.h.I//(cid:20)k,foranysubsequence J of h.I/,wehave r.J/(cid:20)k,andhence (cid:22) .J/D L1 (cid:22)L2.J/. ByProposition3.1,wehave (cid:22)L1.k/.I/D(cid:22)L2.k/.I/. (2))(1) Let J beasequenceofintegersin f1;2;:::;ng with r.J/(cid:20)k. Thenthere is a sequence I0 of integers in f1;2;:::;nkg with r.I0/D1 and h.I0/DJ. Since any subsequence I of I0 satisfies r.I/D1, (cid:22)L1.k/.I/D(cid:22)L2.k/.I/. By Proposition 3.1,wehave (cid:22) .J/D(cid:22) .J/. L1 L2 Algebraic & Geometric Topology,Volume9(2009) 272 AkiraYasuhara ByusingProposition3.2,wehavethefollowingproposition. 0 Proposition3.3 Let L and L be n–componentstringlinksand k anaturalnumber. Then (cid:22)L.I/D(cid:22)L0.I/ forany I with r.I/(cid:20)k ifandonlyif (cid:22)L(cid:3)L0.I/D0 forany I with r.I/(cid:20)k,where (cid:3) isthestackingproductand L0 isthehorizontalmirrorimage 0 of L withtheorientationreversed. x Note that, for a string link L, L is the inverse of L under the concordance, ie, both Lx(cid:3)L and L(cid:3)Lx areconcordanttoatrivialstringlink. Proof By Proposition 3.2, (cid:22)L.I/D(cid:22)L0.I/ (resp. (cid:22)L(cid:3)L0.I/D0) for any I with r.I/(cid:20)k if and only if L.k/ and L0.k/ (resp. .L(cid:3)L0/.k/ and the kn–component trivialstringlink 1 )arelink-homotopic. Henceitisenoughtoshow that L.k/ and kn L0.k/ arelink-homotopicifandonlyif .L(cid:3)L0/.k/ and 1 arelink-homotopic. Note kn that .L(cid:3)L0/.k/DL.k/(cid:3)L0.k/. If L.k/ and L0.k/ arelink-homotopic,then L.k/(cid:3)L0.k/ islink-homotopicto L0.k/(cid:3) L0.k/, which is concordant to 1 . Since concordance of string links implies link- kn homotopy[5;6]1, L.k/(cid:3)L0.k/ islink-homotopicto 1 . kn If L.k/(cid:3)L0.k/ islink-homotopicto 1 ,then L.k/(cid:3)L0.k/(cid:3)L0.k/ islink-homotopic kn to L0.k/. Since L.k/(cid:3)L0.k/(cid:3)L0.k/ isconcordantto L.k/, L.k/ islink-homotopic to L0.k/. Thiscompletestheproof. Two n–component string links L and L0 are weakself (cid:129)–equivalent if the closure cl.L(cid:3)L0/ isself (cid:129)–equivalenttothetriviallink. TShibuyadefinedweakself (cid:129)–equivalenceforlinksin S3 [21],andshowedthattwo linksin S3 areweakself (cid:129)–equivalentifandonlyiftheyareself–(cid:129) concordant[20]. (In[21]and[20],theself–(cid:129) concordanceiscalledthe (cid:129)–cobordism.) Herewegive thesameresultforstringlinks. Proposition 3.4 (cf [20, Theorem]) Two string links L and L0 are weak self (cid:129)– equivalentifandonlyiftheyareself–(cid:129) concordant. Beforeprovingthepropositionabove,weneedsomepreparation. Let LDK [(cid:1)(cid:1)(cid:1)[K be an n–component (string) link and b a band attaching a 1 n single component K with coherent orientation, ie, b\L D b\K (cid:26) @b consists i i 1In[5;6],itwasshownthatconcordanceoflinksinS3 implieslink-homotopy.Itstillholdsforstring links.ItalsofollowsfromTheorem1.1sinceMilnorinvariantsareconcordanceinvariants. Algebraic & Geometric Topology,Volume9(2009) Classificationofstringlinksuptoselfdelta-movesandconcordance 273 of two arcs whose orientations from K are opposite to those from @b. Then L0 D i .L[@b/nint.b\K /,whichisaunionofan n–component(string)linkandaknot, i issaidtobeobtainedfrom L byfission(alongaband b),andconversely L issaidto 0 beobtainedfrom L byfusion[12]. Lemma 3.5 Let L ;L ;L be oriented tangles such that L is obtained from L 1 2 3 2 1 byasingle(self) (cid:129)–move,andthat L isobtainedfrom L byasinglefusion. Then 3 2 0 0 there is an oriented tangle L such that L is obtained from L by a single fusion, 2 2 1 andthat L isobtainedfrom L0 byasingle(self) (cid:129)–move. 3 2 Proof Let B be a 3–ball such that L nB D L nB, and that the pair of tangles 1 2 .B;L \B/ and .B;L \B/ is a (self) (cid:129)–move. Let b be a fusion band with 1 2 L D.L [@b/nint.b\L /. If b intersects B, then we can move it out of B by 3 2 2 an isotopy fixing L since .B;L \B/ is a trivial tangle. Thus we may assume 2 2 that b iscontainedin L nB. Let L0 bealinkobtainedfrom L byfusionalong b. 1 2 1 Then L isobtainedfrom L0 bya(self) (cid:129)–move,whichcorrespondstosubstituting 3 2 .B;L \B/ for .B;L \B/. 2 1 ProofofProposition3.4 If L and L0 areself–(cid:129) concordant,then (cid:22)L.I/D(cid:22)L0.I/ forany I with r.I/(cid:20)2 [1;4]. Proposition3.3andTheorem1.3implythat cl.L(cid:3)L0/ isself (cid:129)–equivalenttothetriviallink. Suppose L and L0 areweakself (cid:129)–equivalent. Since L isconcordantto L(cid:3)L0(cid:3)L0, it isenough to showthat L(cid:3)L0(cid:3)L0 and L0 are self–(cid:129) concordant. The splitsum of L0 and cl.L(cid:3)L0/ is obtained from L(cid:3)L0(cid:3)L0 by a finite sequence of fission, and cl.L(cid:3)L0/ isself (cid:129)–equivalenttothetriviallink O. So L(cid:3)L0(cid:3)L0 isobtainedfrom thesplitsumof L0 and O byasequenceofself (cid:129)–movesandfusion. ByLemma3.5, wecanfreelychoosetoperformallfusionfirst,andthenallself (cid:129)–moves. Hencewe have that the fusion of L0 and O, which is concordant to L0, is self (cid:129)–equivalent to L(cid:3)L0(cid:3)L0. NowwearereadytoproveTheorem1.4. ProofofTheorem1.4 ByTheorem1.3, L and L0 areweakself (cid:129)–equivalentifand onlyif (cid:22)x .I/D(cid:22) .I/D0 forany I with r.I/(cid:20)2. Proposition3.3and cl.L1(cid:3)L0/ L1(cid:3)L0 Proposition3.4completetheproof. Remark Althoughthe C –move(k (cid:21)3)isnotanunknottingoperation,itmightbe k 0 reasonabletoconsiderthefollowingquestion: Fortwostringlinks L and L whose componentsaretrivial,if (cid:22)L.I/D(cid:22)L0.I/ forany I with r.I/(cid:20)k,thenare L and L0 Algebraic & Geometric Topology,Volume9(2009) 274 AkiraYasuhara equivalent upto self C –move and concordance? The question is still open, but the k answerislikelynegative. Forexample,theHopflinkwithbothcomponentsWhitehead doubled, which is a boundary link and thus all its Milnor invariants vanish, is neither self C –equivalent[4]norconcordant[11,Section7.3]tothetriviallink. 3 References [1] AJCasson,LinkcobordismandMilnor’sinvariant,Bull.LondonMath.Soc.7(1975) 39–40 MR0362286 [2] TD Cochran, Derivatives of links: Milnor’s concordance invariants and Massey’s products,Mem.Amer.Math.Soc.84(1990)x+73 MR1042041 [3] TFleming,AYasuhara,Milnornumbersandtheselfdeltaclassificationof 2–string links,from: “Intelligenceoflowdimensionaltopology2006”,(JSCarter,SKamada, LHKauffman,AKawauchi,TKohno,editors),Ser.KnotsEverything40,WorldSci. Publ.,Hackensack,NJ(2007)27–34 MR2371705 [4] TFleming,AYasuhara,Milnor’sinvariantsandself C –equivalence,Proc.Amer. k Math.Soc.137(2009)761–770 MR2448599 [5] CHGiffen,Linkconcordanceimplieslinkhomotopy,Math.Scand.45(1979)243–254 MR580602 [6] DLGoldsmith,Concordanceimplieshomotopyforclassicallinksin M3,Comment. Math.Helv.54(1979)347–355 MR543335 [7] NHabegger,X-SLin,Theclassificationoflinksuptolink-homotopy,J.Amer.Math. Soc.3(1990)389–419 MR1026062 [8] NHabegger,GMasbaum,TheKontsevichintegralandMilnor’sinvariants,Topology 39(2000)1253–1289 MR1783857 [9] KHabiro,Arumusubimenokyokusyosousanozokunituite,Master’sthesis,University ofTokyo(1994) InJapanese [10] KHabiro,Claspersandfinitetypeinvariantsoflinks,Geom.Topol.4(2000)1–83 MR1735632 [11] JHillman,Algebraicinvariantsoflinks,SeriesonKnotsandEverything32,World Sci.Publ.,RiverEdge,NJ(2002) MR1932169 [12] AKawauchi,TShibuya,SSuzuki,Descriptionsonsurfacesinfour-space.I.Normal forms,Math.Sem.NotesKobeUniv.10(1982)75–125 MR672939 [13] JMilnor,Linkgroups,Ann.ofMath. .2/ 59(1954)177–195 MR0071020 [14] JMilnor,Isotopyoflinks.Algebraicgeometryandtopology,from: “Asymposiumin honorofSLefschetz”,PrincetonUniv.Press(1957)280–306 MR0092150 Algebraic & Geometric Topology,Volume9(2009)

Description:
AKIRA YASUHARA. For an n–component string link, the Milnor's concordance invariant is defined for . Lemma 1.2], we have that SL.n/=.s Cc/ is a nilpotent group. Moreover, since .. honor of S Lefschetz”, Princeton Univ. [21] T Shibuya, Weak self delta-equivalence for links, Kobe J. Math. 24 (200
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.