ebook img

Food Powders Properties and Characterization PDF

204 Pages·2020·4.542 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Food Powders Properties and Characterization

Food Engineering Series Series Editor: Gustavo V. Barbosa-Cánovas Ertan Ermiş Editor Food Powders Properties and Characterization Food Engineering Series Series Editors Gustavo V. Barbosa-Cánovas, Washington State University, USA Advisory Board José Miguel Aguilera, Catholic University, Chile Kezban Candoğan, Ankara University, Turkey Richard W. Hartel, University of Wisconsin, USA Albert Ibarz, University of Lleida, Spain Micha Peleg, University of Massachusetts, USA Shafiur Rahman, Sultan Qaboos University, Oman M. Anandha Rao, Cornell University, USA Yrjö Roos, University College Cork, Ireland Jorge Welti-Chanes, Tecnológico de Monterrey, Mexico Springer's Food Engineering Series is essential to the Food Engineering profession, providing exceptional texts in areas that are necessary for the understanding and development of this constantly evolving discipline. The titles are primarily reference-oriented, targeted to a wide audience including food, mechanical, chemical, and electrical engineers, as well as food scientists and technologists working in the food industry, academia, regulatory industry, or in the design of food manufacturing plants or specialized equipment. More information about this series at http://www.springer.com/series/5996 Ertan Ermiş Editor Food Powders Properties and Characterization Editor Ertan Ermiş Food Engineering Department Faculty of Engineering and Natural Sciences Istanbul Sabahattin Zaim University Istanbul, Turkey ISSN 1571-0297 Food Engineering Series ISBN 978-3-030-48907-6 ISBN 978-3-030-48908-3 (eBook) https://doi.org/10.1007/978-3-030-48908-3 © Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface Due to recent developments and progress in food powder technology and significant advancement in the analytical and processing possibilities, there has been a gap in the literature in this field. For this reason, we would like to introduce Food Powders Properties and Characterization with a great pleasure to our respected readers. The students, industrialists, and researchers studying or dealing with food powders may benefit from this book which presents the fundamental properties of food powders and methods of characterization. The chapters include relevant aspects of particle properties as well as bulk powder properties. The main focus of this book was to give a comprehensive overview of powder characterization and an insight into recent research work related to food powders. In this book, the physical and chemical properties of food powders and their effect on food powder behaviour are discussed. In addition, some chapters were focused on particle properties, modification of particles, caking–anticaking mecha- nisms, powder from fruit waste, and microbiological assessment of food powders. We have also included a chapter about rehydration behaviour of food powders which particularly have high protein content. We hope that this book will help to fill the knowledge gap in the literature. We are very grateful to Springer Nature for their valuable guidance and coopera- tion. I would like to thank all authors for agreeing to be a part of this book project. Istanbul, Turkey Ertan Ermiş April 2020 v Contents 1 Food Powders Bulk Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Banu Koç, Mehmet Koç, and Ulaş Baysan 2 Food Powders Particle Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Ulaş Baysan, Mehmet Koç, and Banu Koç 3 Adhesion of Food Powders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Ertan Ermiş 4 Characterization of the Caking Behaviour of Food Powders . . . . . . . 73 John J. Fitzpatrick 5 Characterisation of the Rehydration Behaviour of Food Powders . . 91 John J. Fitzpatrick, Junfu Ji, and Song Miao 6 Anticaking Additives for Food Powders . . . . . . . . . . . . . . . . . . . . . . . . 109 Emine Yapıcı, Burcu Karakuzu-İkizler, and Sevil Yücel 7 Modification of Food Powders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Nasim Kian-Pour, Duygu Ozmen, and Omer Said Toker 8 Powders from Fruit Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Sahithi Murakonda and Madhuresh Dwivedi 9 The Microbiological Safety of Food Powders . . . . . . . . . . . . . . . . . . . . 169 E. J. Rifna and Madhuresh Dwivedi Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 vii Chapter 1 Food Powders Bulk Properties Banu Koç, Mehmet Koç, and Ulaş Baysan 1.1 Bulk Density The bulk density is an important quality criterion during the packaging of powder products and transportation from one place to another. The bulk density also gives information about whether the end product is milled to the desired dimensions or dried to the desired moisture content. Therefore, determining the bulk density of particles means estimation of cost of storage, transportation, product standardiza- tion and process success ability in view of the industry. The most common definition of the bulk density value is a measure of how much powder product can be put into a packaging material having a certain volume. In other words, when a powder just fills a vessel of known volume V, and the mass of the powder is m, then the bulk density of the powder is m/V. After the quantities value of the powder bulk density is determined, it is necessary that these results are evaluated and interpreted. The particles tend to move towards the bottom of the container depending on time. As time progresses, bulk density increases due to this movement of particles. As a result of an increase in the amount of substance falling to volume per unit (m/V), the density is increased. This change of density is depended on the porosity described the non-occupied volume function (Barbosa-Canovas and Juliano 2005). Thus, bulk density is defined as “the mass of particles that occupies a unit volume of a bed”, while porosity is defined as “the volume of the voids within the bed divided by the total volume of the bed”. The particle density, which is for a unit B. Koç (*) Gaziantep University, Fine Arts, Gastronomy and Culinary Arts Department, Gaziantep, Turkey e-mail: [email protected] M. Koç · U. Baysan Aydın Adnan Menderes University, Faculty of Engineering, Department of Food Engineering, Aydın, Turkey © Springer Nature Switzerland AG 2021 1 E. Ermiş (ed.), Food Powders Properties and Characterization, Food Engineering Series, https://doi.org/10.1007/978-3-030-48908-3_1 2 B. Koç et al. volume of the powder, is linked to these two properties. Porosity can be a good prediction of the sphericity or irregularity of the particles in a bulk solid. An average porosity calculation of 0.4 or 40% is normal for spheroid particles, whereas irregu- lar shaped or very small particulates have higher porosity values (Woodcock and Mason 1987). High porosity values are a sign of logistical and economic problems that can be encountered during the storage and transportation of powder product (Fasina 2007). The bulk density of powder is measured as aerated, poured, and tap density con- sidering product type and particle properties (Barbosa-Canovas and Juliano 2005). One of these definitions should be selected, applied and interpreted carefully in view of the process technique and conditions, the usage area of the powder and the structure of the powder. Although each of these definitions has a standard proce- dure, they are far from universality since interpreting these terms is still confusing. For example, the poured density is the loose bulk density according to some researchers while the apparent density is the poured density in view of others (Fasina 2007). Some researchers evaluated that aerated density is remained the bulk density after the aerated the powder. However, aerated density can be defined as “the parti- cles are separated from each other by a film of air and not being in direct contact with each other”. Therefore, each bulk density definition must be well understood before starting the extrapolation. Poured density is widely used and means to “determine the mass–volume ratio of a powder sample by weighing a container of known volume without the sample and then with the freely poured powder.” However, the poured density measurement is modified to any industry or company conditions. This situation causes many diffi- culties: the same height should be always adjusted for the powder poured; the con- stant height and diameter vessel should be used etc. Therefore, the measurement of poured bulk density is far from standardized and is specific to each company and conditions. The powder in the most loosely packed form is defined as the aerated density. The particle possessing the dispersed form drops into the measurement cylindrical vessel. Another application is the gas fluidization. The gas fluidization is sometimes used, and gas flow is closed slowly. It is difficult to level the top of the vessel due to the many structure collapsed. The tap bulk density is “the bulk density of a powder that has been settled into closer packing than existed in the poured state by tapping, jolting, or vibrating the measuring vessel.” Tapped density is determined by compression of the sample filled in the graduated cylinder. Although tapping can be performed as manual, using the mechanical tapping device is preferable and used since this measurement is standardized approximately and it is possible to repeat the sample preparation conditions. The definitions described above are intended to determine the porosity. The determination of porosity gives us information on the particle’s behavior in bulk. In this case, the porosity and bulk density are one of the most effective parameters on the flow characteristics and behavior of the powder particles. The determination of the flow property is particularly important in determining the size of the packaging 1 Food Powders Bulk Properties 3 material, the volume of the product to be transported in silos, the behavior of the particles in the piping system, and packaging opening required to unpack the product. 1.1.1 The Effect of Process Method and Conditions on Bulk Density The bulk density of food powders depends on the intensity of attractive inter- particle forces, the air within each particle (occluded air content) and the air between each particle (interstitial air) particle density, particle size, surface activity and degree of adhesion of powder (Barbosa-Canovas and Juliano 2005; Walton 2000). There may be undesirable structural changes in the final powder product such as shrinkage, deformation, expansion, crust formation depending on the evaporation rate during drying. A shell is formed in the droplet during drying and the thickness of the shell varies according to the drying speed. At high drying rates, large grains with thin shells and low density are obtained, while at low drying rates small particles with thick shells and high density are obtained. Depending on the temperature to which the particle is exposed, the water held in the shell during the drying evaporates and forms a pressure towards the shell. As a result, the shell breaks and hollow spheres are obtained. Morphological properties are directly related to bulk properties of powder food products (Schubert 1987). It is known that complex changes in the morphologies (size, shape and appearance) of droplets occur during drying and that the protection of these properties is related to the porosity and integrity of the par- ticles. With respect to morphology, the particles produced by spray drying generally show a smooth surface and are spherical in shape, have lowest surface-to-volume ratio (aroma retention), highest bulk densities (best packing) and best flowability (Kurozawa et al. 2009). The dry matter content of the material fed to the dryer also affects the morphol- ogy of the end product (Koç et al. 2011). Increasing the feed viscosity, by increasing the dry matter content of feed solution or decreasing the feed temperature will cause the formation of larger particles during atomization (Masters 1991; Mujumdar 2007). It has been reported that surface-tension effects during atomization appeared minor, however an increase in feed dry matter content has an effect on the evapora- tion characteristics where generally there is an increase in bulk density (Masters 1991; Eisen et al. 1998; Mermelstein 2001). The larger particles occupy more pore volume than the smaller particles and provide a decrease in the gap between the particles, hence the higher bulk density of the smaller particles up to a certain diam- eter (Al-Kahtani and Hassan 1990; Grabowski et al. 2006). The particle shape has also effects on the bulk density of powder products. Because the spherical particles have a low interstitial air content, they have the highest bulk density value at situa- tion which other conditions are kept constant. The bulk density of the powder could be small where the powder is comprised of mainly hollow particles. Thus, the

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.