ebook img

Foliations on double-twisted products PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foliations on double-twisted products

FOLIATIONS ON DOUBLE-TWISTED PRODUCTS ANDRE´ GOMES 1 1 0 Abstract. In this paper we present a certain class of geodesic vector fields 2 of the double-twisted product R×(f,g)R. Some examples of totally geodesic n foliationsaregiven. a J 9 1. Introduction 2 The conceptofdouble-twistedproductwas introducedby Pongeand Reckziegel (see [5]) in the context of the semi-Riemannian Geometry. ] G Definition 1. Let (M ,g ) and (M ,g ) be (pseudo)Riemannian manifolds. Let 1 1 2 2 D λ : M M R (i = 1,2) be a positive and differentiable function. Consider i 1 2 × −→ . the canonical projections π : M M M for i = 1,2. Then the double- h i 1 2 i × −→ at twistedproductM1×(λ1,λ2)M2 of(M1,g1)and(M2,g2)isthedifferentiablemanifold M M equipped with the (pseudo)Riemannian metric g defined by m 1× 2 g(X,Y)=λ g (dπ (X),dπ (Y))+λ g (dπ (X),dπ (Y)) [ 1 1 1 1 2 2 2 2 for all vector fields X and Y of M M . 1 1× 2 v 0 This definition generalizes the R. L. Bishop’s notion of an umbilic product (de- 3 noted by M M ), which B. Y. Chen calls a twisted product and which is the 1 λ 2 7 × double twisted product M M (see [1] and [2]). If in this situation λ only 5 1×(1,λ) 2 depends on the points of M , then M M is a warped product by definition. 1. 1 1×λ 2 0 If M and N are complete Riemannian manifolds, then the double-twisted prod- 1 uct M N is not, in general,a complete Riemannian manifold. But, for our 1 ×(λ1,λ2) : purposes,the followingLemma is enough(the proofis similarofthat ofLemma40 v in [4]) i X Lemma1. SupposethatM andN arecompleteRiemannianmanifolds. Giventwo r differentiable functions λ ,λ : M N [1, ), then the double-twisted product a 1 2 × −→ ∞ M N is a complete Riemannian manifold. ×(λ1,λ2) Proof. Denote byπ :M N M andσ :M N N the naturalprojections. × −→ × −→ Denote by and d the arc lenght and the distance in M N, respectively. L ×(λ1,λ2) We use the metric completeness criterion from the Hopf-Rinow theorem. Note first that if v is tangent to M N then, since λ 1 and λ > 0, we ×(λ1,λ2) 1 ≥ 2 have v,v dπ(v),dπ(v) . Hence (α) (π α) for any curve segment α in h i ≥ h i L ≥ L ◦ M N. Analogously, (α) (σ α). Then we have the inequalities ×(λ1,λ2) L ≥L ◦ d(x,y) d(π(x),π(y)) and d(x,y) d(σ(x),σ(y)), x,y M N ≥ ≥ ∀ ∈ ×(λ1,λ2) Both inequalities implies that if ((p ,q )) is a Cauchy sequence in the double- k k k N twisted product M ×(λ1,λ2) N, then (pk)k∈∈N and (qk)k∈N are Cauchy sequences, respectively,in(M,g1)and(N,g2). AsM andN arecomplete,(pk)k N and(qk)k N are convergent and then ((p ,q )) is convergent in M N∈(cid:3) ∈ k k k∈N ×(λ1,λ2) 1 2 ANDRE´ GOMES 2. Preliminaries Some computations are necessary in order to find the examples. We denote by ∂ and ∂ the canonical vector fields of R2. The new metric in R2 is given by x y ∂ ,∂ =[f(x,y)]2 h x xi(x,y)  ∂ ,∂ =0  h x yi(x,y) ∂ ,∂ =[g(x,y)]2  h y yi(x,y) where (x,y) R2 and f,g : R2 (0,+ ) are functions of class . The ∞ ∈ −−→ ∞ C real plane equipped with this (Riemannian) metric is the double twisted product of R andRanddenotedbyR R. Wefindnowitsconnection andcurvatureR. (f,g) × ∇ By metric compatibility we know that 2ff = ∂ ∂ ,∂ =2 ∂ , ∂ x xh x xi h x ∇∂x xi 2ff = ∂ ∂ ,∂ =2 ∂ , ∂ y yh x xi x ∇∂y x 2gg = ∂ ∂ ,∂ =2 ∂ , ∂ x xh y yi h(cid:10) y ∇∂x yi(cid:11) 2gg = ∂ ∂ ,∂ =2 ∂ , ∂ y yh y yi y ∇∂y y 0 = ∂ ∂ ,∂ = ∂ ,∂ + ∂ , ∂ xh x yi h∇(cid:10)∂x x yi(cid:11) h x ∇∂x yi 0 = ∂ ∂ ,∂ = ∂ ,∂ + ∂ , ∂ yh x yi ∇∂y x y x ∇∂y y ∂ = ∂ ∇∂x y ∇∂y x (cid:10) (cid:11) (cid:10) (cid:11) where in the last equation we used [∂ ,∂ ]=0. x y Using the equations above, we find the Riemannian connection of R R: (f,g) ∇ × 1 1 ∂ = ∂ ,∂ ∂ + ∂ ,∂ ∂ ∇∂x x f2 h∇∂x x xi x g2 h∇∂x x yi y f ff x y = ∂ ∂ f x− g2 y 1 1 ∂ = ∂ ,∂ ∂ + ∂ ,∂ ∂ ∇∂y y f2 ∇∂y y x x g2 ∇∂y y y y gx(cid:10)g gy (cid:11) (cid:10) (cid:11) = ∂ + ∂ − f2 x g y 1 1 ∂ = ∂ ,∂ ∂ + ∂ ,∂ ∂ ∇∂y x f2 ∇∂y x x x g2 ∇∂y x y y f (cid:10) g (cid:11) (cid:10) (cid:11) y x = ∂ + ∂ x y f g FOLIATIONS ON DOUBLE-TWISTED PRODUCTS 3 Moreover,by definition we have R(∂ ,∂ )∂ = ∂ ∂ ∂ x y x ∇∂y∇∂x x−∇∂x∇∂y x−∇[∂x,∂y] x = ∂ ∂ ∇∂y∇∂x x−∇∂x∇∂y x f ff f g x y y x = ( ∂ ∂ ) ( ∂ + ∂ ) ∇∂y f x− g2 y −∇∂x f x g y f f ff ff x x y y = ∂ +( ) ∂ ∂ ( ) ∂ f ∇∂y x f y x− g2 ∇∂y y− g2 y y f f g g y y x x ( ∂ +( ) ∂ + ∂ +( ) ∂ ) − f ∇∂x x f x x g ∇∂x y g x y f f g f ff g g g ff x y x x y x y y = ( ∂ + ∂ )+( ) ∂ ( ∂ + ∂ ) ( ) ∂ f f x g y f y x− g2 − f2 x g y − g2 y y f f ff f g f g g y x y y x y x x ( ∂ ∂ )+( ) ∂ + ( ∂ + ∂ )+( ) ∂ − f f x− g2 y f x x g f x g y g x y (cid:20) (cid:21) f2 g2 f g ff g ff g = y x + x x y y ( y) ( x) ∂ "g2 − g2 fg − g3 − g2 y − g x# y and then f2 g2 f g ff g ff g R(∂ ,∂ )∂ ,∂ =g2 y x + x x y y ( y) ( x) h x y x yi "g2 − g2 fg − g3 − g2 y − g x# Analogously, we have R(∂ ,∂ )∂ = ∂ ∂ ∂ x y y ∇∂y∇∂x y−∇∂x∇∂y y−∇[∂x,∂y] y = ∂ ∂ ∇∂y∇∂x y−∇∂x∇∂y y f g g g g y x x y = ( ∂ + ∂ ) ( ∂ + ∂ ) ∇∂y f x g y −∇∂x − f2 x g y f f g g y y x x = ∂ +( ) ∂ + ∂ +( ) ∂ f ∇∂y x f y x g ∇∂y y g y y gg gg g g x x y y + ∂ +( ) ∂ ∂ ( ) ∂ f2 ∇∂x x f2 x x− g ∇∂x y− g x y f f g f g g g g g y y x y x x y x = ( ∂ + ∂ )+( ) ∂ + ( ∂ + ∂ )+( ) ∂ f f x g y f y x g − f2 x g y g y y gg f ff gg g f g g x x y x y y x y + ( ∂ ∂ )+( ) ∂ ( ∂ + ∂ ) ( ) ∂ f2 f x− g2 y f2 x x− g f x g y − g x y (cid:20) (cid:21) f2 g2 gf g g f f gg = y x + x x y y +( y) +( x) ∂ "f2 − f2 f3 − fg f y f2 x# x 3. Geodesic vector fields A codimension-one foliation on a Riemannian manifold M is totally geodesic F if their leaves are totally geodesic submanifolds of M. If an unit vector field U =a(x,y)∂ +b(x,y)∂ (x,y) x y 4 ANDRE´ GOMES defined on R R is geodesic, then its integral curves determines a totally (f,g) geodesic foliati×on on R R. The vector field U is geodesic U =0. But (f,g) U × ⇔ ∇ U= a U +b U ∇U ∇∂x ∇∂y = a( (a∂ +b∂ ))+b (a∂ +b∂ ) ∇∂x x y ∇∂y x y = a(a∇∂x∂x+ax∂x+b∇(cid:0)∂x∂y+bx∂y)+b(cid:1)a∇∂y∂x+ay∂x+b∇∂y∂y+by∂y f ff f g x y y (cid:0) x (cid:1) = a a( ∂ ∂ )+a ∂ +b( ∂ + ∂ )+b ∂ f x− g2 y x x f x g y x y (cid:18) (cid:19) f g gg g y x x y +b a( ∂ + ∂ )+a ∂ +b( ∂ + ∂ )+b ∂ f x g y y x − f2 x g y y y (cid:18) (cid:19) f g g f = a2 x b2 x +2ab y +aa +ba ∂ f − f2 f x y x (cid:18) (cid:19) ff g g + a2 y +b2 y +2ab x +ab +bb ∂ − g2 g g x y y (cid:18) (cid:19) Therefore, the condition U =0 is equivalent to the following system U ∇ a2fx b2gxg +2abfy +aa +ba =0 f − f2 f x y   −a2fgf2y +b2ggy +2abggx +abx+bby =0 Theorem 1. Consider the following unit vector field defined on R (f,g)R × 1 1 U := ∂ + ∂ (x,y) √2f(x,y) x √2g(x,y) y Then the vector field U above is an unit geodesic vector field on R R iff (f,g) × f =g y x Proof. In this case we have a = 1/√2f and b = 1/√2g. Substituting this in the above system we obtain 1 fx 1 gxg + 1 fy + 1 ∂ ( 1 )+ 1 ∂ ( 1 )=0 2f2 · f − 2g2 · f2 fg · f √2f · ∂x √2f √2g · ∂y √2f   −2f12 · fgf2y + 2g12 · ggy + f1g · ggx + √12f · ∂∂x(√12g)+ √12g · ∂∂y(√12g)=0 Aftersimplifications, both equations are equivalent to the equation fy =gx (cid:3) Example. If f(x,y) := ex+y +sin2(x)+1 and g(x,y) := ex+y +1, then f = g y x and the following unit vector field of R R (f,g) × 1 1 U := ∂ + ∂ (x,y) √2(ex+y+sin2(x)+1) x √2(ex+y +1) y is a geodesic vector field. 4. Foliations with geodesic normal vector field We recall some results about totally geodesic foliations. Let Mn+1 be an ori- entable Riemannian manifold and be a codimension-one foliation on M. ∞ F C − Suppose that is transversely orientable, i.e., we may choose a differentiable unit vector field NF X(M) normal to the leaves of . ∈ F FOLIATIONS ON DOUBLE-TWISTED PRODUCTS 5 Given a point p M we may always choose an orthonormalframe field ∈ e ,e ,...,e ,e 1 2 n n+1 { } defined in a neighborhood of p and such that the vectors e ,...,e are tangent to 1 n the leaves of and e =N. The Ricci curvature in the direction e =N is n+1 n+1 F n 1 Ric(N):= R(e ,N)e ,N i i n h i i=1 X The divergence of a vector field V X(M) is locally defined as ∈ n+1 div(V):= V,e h∇ek ki k=1 X In [3] the Author proved the following Theorem2. Let beacodimension-onefoliation ofacompleteRiemannianman- F ifold Mn and let N be an unit vector field normal to the leaves of . Then F 1 is totally geodesic Ric(N) div( N)=0 N F ⇐⇒ − n ∇ As a consequence we obtain Corollary 1. Let be a codimension-one foliation of a complete Riemannian F manifold M and let N be a geodesic unit vector field normal to the leaves of . F Then is a totally geodesic foliation if, and only if, Ric(N)=0. F The following theorem gives us some examples of such foliations Theorem 3. Let f = f(x) 1 and g = g(y) 1 be differentiable functions. Consider the following unit vec≥tor field defined on≥R R (f,g) × 1 1 N := ∂ + ∂ (x,y) √2f(x) x √2g(y) y Then N is a normal vector field of a totally geodesic foliation of R R. (f,g) × Proof. We have f = g = 0 and then N is a geodesic vector field. Moreover, for y x thischoiceoffunctions,thedouble-twistedproductR Risflat(seetheexpres- (f,g) × sionsofcurvatureRinthe 2)andcomplete(byLemma1). Therefore,Ric(N)=0 § and (by Corollary 1) N is a normal vector field of a totally geodesic foliation of R R (cid:3) (f,g) × Example. If f(x):=ex+1 and g(y):=sin2(y)+1, the following vector field 1 1 N := ∂ + ∂ (x,y) √2(ex+1) x √2(sin2(y)+1) y is a geodesic vector field and normal to the leaves of a totally geodesic foliation of R R. (f,g) × 6 ANDRE´ GOMES References [1] Bishop,R.L.: Clairautsubmersions,DifferentialGeometry,inHonorofK.Yano,Kinokuniya, Tokyo, pp.21-31(1972) [2] Chen, B. Y.: Geometry of Submanifolds and its Applications, Science University of Tokyo, (1981) [3] Gomes, A.O.: The mean curvature of a transversely orientable foliation, Result.Math. 46, 31-36(2004) [4] O’Neill, B.: Semi-Riemannian Geometry - with applications to Relativity, Academic Press (1983) [5] Ponge,R.andReckziegel,H.: Twistedproductsinpseudo-Riemanniangeometry,Geom.Ded- icata,48,15-25,(1993) Departmentof Mathematics Institute of MathematicsandStatistics University of Sa˜oPaulo Sa˜oPaulo-05508-090-SP Brazil E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.