JournalofTheoreticalandComputationalChemistry Vol.13,No.4(2014)1450026(15pages) #.c WorldScienti¯cPublishingCompany DOI:10.1142/S0219633614500266 FoldingsimulationofTrp-cageutilizinganewAMBERcompatible force ¯eld with coupled main chain torsions LirongMou*,XiangyuJia†,YaGao†,YongxiuLi†,JohnZ.H.Zhang†,‡andYeMei†,‡,§ *InstituteforAdvancedInterdisciplinaryResearch m o EastChinaNormalUniversity,Shanghai200062,P.R.China c ww.worldscientific.personal use only. Stat‡eNYKEUeay-sELtCaCIbnNh†oCsiUrtneiaatnCtuotNteerenryotorfeoomfSrfrhTaPfaLolhnrraeUegoscCnheriaireosviitmeaoi2crnnpa0sduil0Stt0yCapa,6netoi2cdSom,thnrCpPaoauonsl.tmcgCaRohtphp.aiuoeyiCtnma2ahat0inilisn0odtBa0rnyD6iao2leap,pSthPacyNri.setYiRmncUsc.eenCSthhoianfnaPghhayisics m wFor §[email protected] aded fro8/14/14. RAeccceeivpetded2120JManauracrhy22001144 o0 nln Published21May2014 wo oY DT 13. RSI A newly developed AMBER compatible force ¯eld with coupled backbone torsion potential hem. 2014.K UNIVE trmeerpemclihcsaan(AiesxMmcBhwaEintRhg0ea32saDynn)deirsdgueirtteiicclitzfoemdldoiinnlegcaouflfaotrlhdeidnhygyndsairmmopiuchlsaotb(iiMocnDcoo)rfeas(imHmPuinlCai-t)pioarnnostd,etinhaeTm(cid:1)r-puh-letcila-ixgsteie.npTthhfoerlod¯uinngahgl CR stageissuggested.Thenativestructurehasthelowestfreeenergyandthemeltingtemperature mput. W YO psureredmicetendt.fTrohmisstthuedysp,etcoig¯ecthheerawtictahpoaucritpyreCvvioiussosntulydy1,2sKhohwisghtheratthAaMnBtEheRe0x3p2Deriismaennataclcumraeate- oE CN force¯eldthatcanbeusedforproteinfoldingsimulations. or. by he Keywords:Trp-cage;AMBERforce¯eld;coupledbackbonetorsion;foldingmechanism;melting T J. temperature. 1. Introduction Understanding the mechanism of protein folding is critical for ¯ghting against protein misfolding related diseases and for protein engineering. Much progress in this¯eldhasbeenmadeinthepastfewdecades.1–3Asacomplementtoexperiment, molecular dynamics (MD) is able to give an atomic description of the kinetic and thermodynamic properties of proteins covering a wide range of time scales, which are usually di±cult to observe in experiment. Some peptides and small proteins have been studied4–7 by MD simulations bene¯ted from their small size and fast folding rate. Among them, a 20-residue mini-protein Trp-cage8 (sequence: NLYIQ §Correspondingauthor. 1450026-1 L.Mouetal. WLKDG GPSSG RPPPS) is an ideal system that has been well investigated by both theoretical9–22 and experimental means.23–29 Trp-cage consists of an (cid:1)-helix from residue 2 to 8, a 310-helix from residue 11 to 14 and a polyproline II stretch. The indole ring of Trp6 is buried in the center of a hydrophobic core (HPC), which isformedbythesidechainsofTyr3andfourprolineresidues(Pro12,Pro17,Pro18, and Pro19). The guanidine group of Arg16 and the carboxylic group of Asp9 can form a salt bridge. Some suggest that salt bridge may also contribute to the stability of protein structure.16,30–32 While some experimental and theoretical studies showed that Trp-cage can maintain the folded state after the elimination of this salt bridge.28,33 With continuous advancement of the force ¯elds for protein, there is no di±culty in folding this short peptide. But to recapitulate some ex- m co perimental observables, such as melting temperature, is still a challenge. More c. worldscientifional use only. i(ocn1oft)nTr¯Wirgnpuhe-imcanatgegniestaitnsahd®aeerscmaitmtsoepr-tellhiemedtiwfito±iolndcgsuitnlsatgtteelpqamuniendosdsttceihoalenposperromoafcroeetrshesirsceoolffamoftloedplddilneixngt?gop?(r3io(t)2cs)HesWfoso?wlh3d4eti–nht3hg6eee(rm4nt)vheicWerhofanhonemldtisheimnnegtr. ww.pers the secondary-like structures form before the protein collapsed to a compact m wFor structure? Many studies have been devoted to ¯nd the answers. The NMR and aded fro8/14/14. eCxDpeerximpeernitmsesnutgsg8e,2s7t,3e7dstuhgagtetshteedfoaldsinimgpmleecthwaon-isstmateofmtheechTarnpi-scma.geWphroilteeisnomwaesoetvheenr o0 nln more complex and intermediates were involved before the occurrence of fold- wo DoTY ing.24,28,38After77MDsimulations,Duanetal.suggestedthatpackingoftheTrp6 13. RSI sidechaincouldbetherate-limitingstep.14,15Tianetal.34noticedthatthesize,the 4.E m. 201UNIV ptooldaeritzeartmioinneotfhtehefocldonin¯gnepmatehnwtaayn.dZthhoeues®uegcgteosftesdolvtheantttchoem(cid:1)pe-hteedlixwwitahsefaocrhmoetdheinr CheRK the ¯nal stage.39 On the contrary, some experimental results showed evidences of a ut. YO helical structure in the denatured state of Trp-cage, suggesting an early formation ompEW of the (cid:1)-helix.24 CN or. by Thecontroversyisresultedfromthelimitationsofboththeexperimentsandthe e h computations. Theoretical prediction of protein folding pathway depends on the T J. ergodicityofphasespaceandthereliabilityofforce¯eldemployed.Duetotherapid development of computational techniques, the urgent requirement for an accurate force¯eldisbecomingmoreandmoresigni¯cant.Manystudieshavebeendevotedto the re¯nement of force ¯elds. Best et al. optimized the additive AMBER40 and CHARMM41 all-atom force ¯eld. Li et al.42 used to downhill simplex minimization algorithm to optimize the dihedral angel potential with respect to NMR measure- ments.Thisnewforce¯eld,AMBER99SBnmr,iscapableofgivingimprovedresults compared to those of AMBER99SB. Lindor®-Larsen et al.43 optimized side-chain dihedral parameters of certain residues by matching with the high-level quantum- mechanicalcalculation.However,wedeemthatamajordefectincurrentforce¯elds consistsinthesimplisticfunctionalformformainchaintorsions.Duethatthemain chain torsions (’ and ) are not separable, employing coupled terms for the main chain torsions is essential, especially for delineating the potential energy barriers, 1450026-2 FoldingsimulationofTrp-cage which are crucial to large conformational change. A new set of backbone torsion parametersutilizingcoupled2Dmainchaintorsiontermshasbeendevelopedinour group.44 Preliminary examinations of its reliability for model peptides have shown thatitiscapableofgeneratingmorebalancedsecondarystructuredistributionthan original AMBER force ¯elds. In this work, folding simulation of Trp-cage was carried out with this new AMBER compatible force ¯eld incorporating re-optimized 2D main chain torsion potential (AMBER032D). Other force ¯eld terms were directly extracted from AMBER0345force¯eld.ThesimulatednativestatematchedverywellwiththeNMR structureandthepredictedmeltingtemperaturewasclosetotheexperimentalvalue. Meanwhile, a possible folding mechanism was proposed. m o c c. m www.worldscientifiFor personal use only. 22Irdnai..h1tAeeM.ldyM2re.aDBtTlhsEhtoRfeoodrrpfmsooirteocednentb¯iayelldCe,n–teNhrge–yCmo(cid:1)af–inCeaccahhnadtinorNtsoi–orCnsi(cid:1)oi–snCsex–(pN’r,easnrsedesdp ea,cstwiavhe1iclDyh)Faaroreuerditeer¯renaetexedpdaanssesptiohane- aded fro8/14/14. tpraurnacmaetteedriazfatteironthorfeteoorsriofonutrertmermmsa.inDlyuefotcousthoenlaimsmiteadllpnourmtiboenrooffsppaacraemareotuernsd, tthhee o0 wnlon energybasis,whichisdeleteriousforthestudyoflargeconformationchangesuchas oY DT protein folding. Recently, a new functional form with 2D Fourier terms for main 13. RSI chain torsions has been proposed and parameterized by our group.44 The alanine 4.E m. 201UNIV denipeergpytidmea(pAfDor)awsaesrciehsoosefn(’a;s t)hepamirosdwelassycsatelcmulfaotredpaartaMme0t6er2iXza/taioung.-cTch-pevptzo/te/nHtFia/l CheRK 6-31G**levelusingGaussian09package.46ByequalizingtheQMandMMenergies, ut. YO the main chain torsion energy can be expressed as: mpW CoNE E ¼E (cid:1)E þG (cid:1)G ; ð1Þ or. by mct int oth PCM GB e h whereE andG aretheinternalenergyandpolarsolvationenergycalculatedat T int PCM J. QM level47 employing SMD, a continuous solvation model.48 It di®ers from our previousstudyinwhichtheIEFPCMsolvationmodelwasemployed.E istheMM oth energy excluding the main chain torsions. G is the generalized Born solvation GB energy.49 E can be written as: mct XN’ XN E ð’; Þ¼ Cðm;nÞeim’ein : ð2Þ mct i¼(cid:1)N’j¼(cid:1)N The expansion coe±cient, the only parameters for the main chain torsion, can be obtained by imposing transformation 1 XN’ XN Cðm;nÞ¼ E ð’; Þe(cid:1)im’e(cid:1)in ð3Þ 4(cid:2)2 mct i¼(cid:1)N’j¼(cid:1)N 1450026-3 L.Mouetal. with Emctð’; Þ calculated from Eq. (1). Other torsion terms around N–C(cid:1) and C(cid:1)–C bonds have their contributions also removed from the original AMBER force ¯eldandmergedinto2Dtorsionterms.Thisnewforce¯eldhasbeencodedintothe sander and pmemd modules of AMBER 11. 2.2. Simulation protocol The simulation began with a linear structure of trp-cage. It was ¯rst optimized by 1000 steps of steep decent method followed by 500 steps of conjugate gradient method. The relaxed structure was gradually heated to 300K in 100ps. Then a 500ps MD simulation at constant temperature was conducted to further relax the m whole system. The ¯nal structure was chosen as the initial structure for all the 12 o c.c replicasinREMDsimulations.Temperaturesweresetinarangefrom261to542K.50 worldscientifional use only. GmbyeimnsueicrraftalhiczeeedasorBelvaoarttneiormmno.ed5®2eelI5cn1tt.weNgitrohanlaptniomlea®eressctotelipvvaewtsaiaoslntsecttoerntmoce1nwftasr.saTtaieopmnprpooefxr0iam.2tuaMrteewlwyaarsseuprterigelisuzelenadtteetddo m www.For pers uristihnmg5B4ewreansdsuesnedthteormcoonstsatrta53inwaitlhl tahecocuopvlainlegnttimboencdosnsitnavnotlvoinfg1phsy.dSrHogAeKnEataolmgos-. oaded fro08/14/14. Se5a0wc0ahnpssrewdpielrirececata.tSMtneDmappsstihmeodutselavwteireoyrne0s.s2aa5tvpe3ds0a0enKvderMwyeD0re.s2i5amlpsuosl.actBaioerrsniiseddweseorRuetEeMxtotDesntdsuiedmdyutoltah1tei6o0fnon,ldstiwfnoogr nln wo pathway. oY DT 3. SI 4.1ER 2.3. Analysis method m. 201UNIV Parallel Tempering Weighted Histogram Analysis Method (PTWHAM)55 was used heK for the calculation of free energy. The potential energy density of states can be CR ut. YO expressed as: mpW P heor. Coby NE (cid:1)m ¼ PNk¼T1g(cid:1)m1kNNkk¼(cid:2)T1Ug(cid:1)me1kxHp½mfkk(cid:1)(cid:3)kUm(cid:2); ð4Þ T J. where (cid:1) is the density of state and g is the statistical ine±ciency which usually m mk takesthevalueof1.(cid:3) istheBoltzmannconstantandf isthefreeenergyatthekth k k temperature. U is the energy and H is the number of conformations with the m mk potential energy valuesequal to U . N isall the conformations sampled atthe kth m k temperature.N isthetotalnumberofreplicas.Anyobservablesatthetemperature T of interest can be calculated from the density of state. The root mean square devi- ation (RMSD) of the backbone atoms N, C(cid:1) and C and that of the HPC between simulated and the NMR structure (the ¯rst model in PDB entry 1L2Y) were com- puted.Otherreactioncoordinates(RCs),likeradiusofgyration(R ),nativecontact g (Q), heat capacity (C ) and (cid:1)-helix fraction were also analyzed. Native contact, a v widelyusedmetric,isde¯nedbytwonon-neighboringresiduesseparatedbylessthan 7.0(cid:3)A.56,57 There are 42 native contacts in the NMR structure. The formation of (cid:1)-helixstructurewasdeterminedbymainchaindihedralangles((cid:1)100(cid:3) (cid:4)’(cid:4)(cid:1)30(cid:3) 1450026-4 FoldingsimulationofTrp-cage and (cid:1)67(cid:3) (cid:4) (cid:4)(cid:1)7(cid:3)). To avoid numerical discontinuity problem, the helicity is de¯ned as: 1 (cid:1) ¼ n h i on h i o: ð5Þ h 1þ 1:5(cid:5)ð’þ60(cid:3)Þ 4 1þ 1:5(cid:5)ð þ45(cid:3)Þ 4 30 25 When ’ and equal (cid:1)60(cid:3) and (cid:1)45(cid:3), respectively, the helicity equals 1. When dihedrals are away from ((cid:1)60(cid:3);(cid:1)45(cid:3)), the helicity decays rapidly. All the ensemble statistical analysis was performed on the last 155ns trajectory of each simulation. m 3. Results and Discussion o c worldscientific.onal use only. Dcetiixoeucnnrhcisanynfgogfrotehrdreiap®RtheiraoEesMnebteDsttpweasmeicemepneusrlnaaaemttiuigoprhnleib,snogaarrianwengisddhteoetwmrhaenpnegcirnoeantFovufiergert.gseS.men1Tp.cheeTreahstppeueorreetedesanrwtweiaeearlrdeeeengqueuusreaagdrtya.enTdotivheseeterrdlieab±bpuys-- ww.pers between neighboring temperatures and the exchange ratios are around 0.3. All the m wFor replicashavetravelledinthetemperaturespaceback-and-forthformanytimes,and aded fro8/14/14. tahnedfSo3ld.eWdhsteantetshehafovledebdeesntreuvcetrurreeaicshreedacbhyedm,othsteopfetphteidreepstliacyass,inasthsheovwicniniintyFoigfst.hSa2t o0 nln structure and at low temperature for several to tens of nanoseconds, indicating the wo DoTY potential energy superiority of the folded structure under this interaction potential. 3. SI The distribution of the backbone RMSD from the ¯rst model of the NMR 1R 4.E m. 201UNIV sFtirgu.c1tu(ar)e.sA(Pcroont¯eginurDataiotan iBsacnoknsiednetrreyd1tLo2bYe)inshtohwesuntfhorledeedpestaaktse aifsitdsebpaicctkebdonine heK RMSD is above 2.2(cid:3)A. This criterion is determined by the location of the distinct CR ut. YO troughinthedistributionofbackboneRMSDandisconsistentwiththatinthestudy mpW by Day and coworkers.19 There are two narrow peaks in the folded domain, which oE CN or. by cover 63.3% of the con¯gurations altogether. In the unfolded region, a broad dis- he tributionpeaksat3.25(cid:3)Aandextendstoover8(cid:3)A.Thispeakpossiblycorrespondsto T J. an intermediate state with the peptide partially folded. Cluster analysis is an e®ec- tive means to detect stable states. We used the kclust tool in MMTSB58 to classify theconformationssampledat300K.Thecentroidstructuresofthetopthreeclusters are shown in Fig. 1(b). The largest cluster holds 57% of the conformations. The backbone RMSD of the centroid structure is only 1.1(cid:3)A, which is de¯nitely in the folded region. The peptide adopts a U shape and both the (cid:1)-helix and the 310-helix are well folded. Superimposition of the simulated conformation with the smallest RMSD and the NMR structure is shown in Fig. 1(c). These two structures are well alignedforboththetraceofthebackboneatomsandthepackofthesidechains.The TRPresidueiswellburiedinaHPC.Thesecondandthethirdclusterscontain18% and 15% of the conformations respectively. The centroid structures of these two clustersareinanearUshapebutneitherofthemhas(cid:1)-helixcompletelyformed.We also studied the positions of Trp-6 residue in the centroid structures of these three 1450026-5 L.Mouetal. m o c c. worldscientifional use only. ww.pers m wFor aded fro8/14/14. Ftriagj.ec1t.ory(aa)tP30r0obKa;b(icli)tiOesveorflatyheofRthMeSsDimduilsattreidbuctoinofnosrmatat3io0n0Kw;it(hbt)hMesamjoarllecsotnRfoMrmSaDtiaotn3c0l0uKste(rrsedo)fatnhde o0 nln theNMRstructure(blue). wo oY DT 13. RSI mainclusters.Inthe¯rstcluster,theHPChasformedandTrp-6isstable.Butinthe 4.E m. 201UNIV odtrhaemractilcuasltleyr.s,TthhisessuidggeecstheadinthoefnTurcple-6atitoank-ecsonadwenrsoantgionormienecthatainoinsmanadnd°uincdtuicaatteeds CheRK one possible folding pathway: in the early stage, the tertiary and second structures ut. YO areonlypartiallyfolded;thenthefoldinggoesviathepackofTrp-6inHPCfollowed ompEW by the full formation of (cid:1)-helix. CN or. by In order to con¯rm this conjecture, we plot the free energy landscapes (FEL) e h mapped to several RCs. The FEL shown in Fig. 2 also supports the collapse-¯rst T J. mechanism. The HPC collapses in the early stage of the folding with the RMSD of theHPCdecreasesfrom16to5(cid:3)A.Thenthe(cid:1)-helixbeginstogrow.Aswecanseein Fig. 2, there are two barriers separating this FEL into three regions. In region III, TheRMSDofHPCisnear4.0(cid:3)Aand(cid:1)-helixfractiondistributesfrom0.25to0.65.In regionII,theRMSDofHPCtranslatesfrom4.0(cid:3)Atonear2.5(cid:3)Aandthedistribution of (cid:1)-helix varies from 0.4 to 0.65. As we can see, from region III to II, further formationof(cid:1)-helixdoesnotoccuranditistheoptimizationofHPCthatdrivesthis folding process. In region I, the RMSD of HPC is near 1.0(cid:3)A and (cid:1)-helix fraction distributes from 0.5 to 0.8. So from region II to I, the growth of (cid:1)-helix and further optimization of the HPC become synergetic. The (cid:1)-helix fraction of the native structure is around 0.74, which is in the deepest free energy well. WealsocarriedouttwodirectMDsimulationstostudythefoldingprocessofTrp- cage. Each simulation ran for 500ns at 300K. For each trajectory, conformations 1450026-6 FoldingsimulationofTrp-cage m o c c. worldscientifional use only. ww.pers m wFor aded fro8/14/14. Fig.2. Fittedfreeenergylandscapeinkcal/molmappedtotheRMSDfromtheNMRstructureforthe nlon 0 HPCandthefractionof(cid:1)-helixat300K.Theredarrowpointstothelocationofthenativestate. wo oY DT 3. SI collected in the last 250ns are used for analysis, in which the native state has been 1R 4.E reachedandfolding/unfoldingprocesseshaveoccurred.InFig.3,theleftpanelshows m. 201UNIV the variation of RMSD over simulation time for the ¯rst trajectory. After cluster heK analysis,conformationsbelongingtothetop¯veclustersarecircledbydi®erentcolors. CR ut. YO mpW oE CN or. by e h T J. Fig.3. TheRMSDvariesduringthelast250nsforthe¯rstdirectMDtrajectoryandeverycoloredcircle encompassestheconformationsbelongtothesamecluster(leftpart).Thespecialstructuresnearestto centersoftop¯veclustersandfoldingroutes(blackarrows)inthistrajectoryaredisplayed(rightpart). 1450026-7 L.Mouetal. Eachclusterhasatypicalstructurenearesttoitscenter.These¯vetypicalstructures arelistedintherightsideofFig.3.Aswecansee,forstructures3,4and5whoseRMSD values are larger than 3(cid:3)A, their secondary structures are partially formed. But the indoleringofTrp-6takesthewrongorientation.Thesestructuresmaycorrespondto theconformationsinregionIIIofFig.2.Toarriveatthenativestate,thestructuresin cluster 3, 4 and 5 must travel via cluster 2. RMSD of conformations in cluster 2 °uctuatelargelyfrom1.5(cid:3)Ato3(cid:3)A.Inthiscluster,Trp-6takesthecorrectorientation whichfurtherpromotestheformationofHPCbutthe(cid:1)-helixisstillpartiallyformed. ThiscorrespondstoregionIIinFig.2.HPCcanstabilizethesecondstructureandthe second structure also contributes to the formation of HPC. This synergetic process drives protein going from cluster 2 to cluster 1 (the native state). For the second m co trajectory,resultsaredescribedinFig.4.Inthistrajectory,structure1correspondsto worldscientific.onal use only. pmcthoaumerstntpiaalgeltlotyievlfteyohrsrmtfooauertgdmeh..eFSdsrttorrbuumucctttuuunrTrfeeorlp22d-.e6hdIantssatsTakttrereuspct-t6otuhttrehaeekw5en,rnaoatntilhvlgeethosrteriagiesthneetc,taosottnrriidouenncst.ttuarSutrieoco,t3nut(rahRenesMsdehStaDhsveee>co(cid:1)a3n-lm:hd0eao(cid:3)Alrisxyt) ww.pers structure elements cannot be stabilized by HPC and Trp-cage must leave this well m wFor eventuallytosearchforamorestablestate. aded fro8/14/14. witIhnstohmisesetxupdeyr,imaehnetlimxefraasgumreemnetnitssf.2o4u,5n9dIninsothmeeuontfhoeldrecdomstpauteta.tTiohnisalisstcuodniseiss,teXnut o0 nln et al.17 used REMD with hybrid Hamiltonian to study the folding mechanism of wo DoTY Trp-cage and Chowdhury et al.14 carried out 77 100-ns direct MD simulations for 13. RSI Trp-cage,theybothfoundexistencesofhelixstructureintheunfoldedstateandthe 4.E m. 201UNIV formation of HPC centered on Trp-6 was the rate-limiting step. Similar to their heK CR ut. YO mpW oE CN or. by e h T J. Fig.4. TheRMSDvariesduringthelast250nsfortheseconddirectMDtrajectoryandeverycolored circleencompassestheconformationsbelongtothesamecluster(leftpart).Thespecialstructuresnearest tocentersoftop¯veclustersandfoldingroutes(blackarrows)obtainedfromthistrajectoryaredisplayed (rightpart). 1450026-8 FoldingsimulationofTrp-cage m o c c. worldscientifional use only. ww.pers m wFor aded fro8/14/14. o0 nln wo oY DT 3. SI 1R 4.E m. 201UNIV heK CR mput. W YO Fig.5. Fittedfreeenergylandscapeinkcal/molmappedtobackboneRMSDandRgat261K(upper oE left),280K(upperright),300K(lowleft)and321K(lowright). CN or. by e h studies,wealsosuggestthatcorrectorientationofTrp-6andformationofHPCisan T J. important step in folding from the intermediate state to native state. TheFELofTrp-cageatfourtemperaturesmappedtoR andRMSDareshownin g Fig. 5. The dominant free energy well at low temperature is located at the folded region with the backbone RMSD and R around 1.0(cid:3)A and 7.0(cid:3)A, respectively. A g minorwellisseenintheunfoldedregionwiththebackboneRMSDaround3(cid:3)Aanda more compact structure than the native structure. Population shift from the folded region to the unfolded region can be detected with the increase of temperature, indicating a thermal unfolding event. The conformations are mainly distributed in the free energy well in the unfolded region at 321K. Plot of the population in the folded region at all the temperatures is shown in Fig. 6(a) (see the black dots). The predicted melting temperature, atwhich thefolded and unfoldedconformations are equally populated, is 287K, which is much lower than the experimental measure- ment(317K).26However,thepredictionmaybebiasedifonlyasingleRCischosen 1450026-9 L.Mouetal. m o (a) (b) c c. worldscientifional use only. Ftteriimga.np6ge.lrea)t(ulaer)negVrtahanrogiafet;tiho(bne)snToafthitvehe¯e(cid:1)tpt-eohdpelusixplaertceiiog¯nicoonhfeafanotlddce(ubdrlvusete.astqeudaertee)rmthieneodccbuyrr(ebnlcaeckofdtohte)nRaMtivSeDco<n2ta:2ct(cid:3)Ai,n(trhede ww.pers to delineate the thermodynamics.60 Therefore, the melting curves of the relative m wFor lengthofthenative(cid:1)-helixregionandoftheoccurrenceofthenativecontactarealso aded fro8/14/14. tshtuadnietdh.aTtohfetmheelgtilnogbatlemunpfeorladtinugre.Tofhtehnea(cid:1)t-ihveelicxonretgaicotnisise3v5e4nKle,sswlhaibcihlei,somfuwchhiclahrtgheer o0 wnlon melting temperature is another 22K higher. Therefore, the predicted melting tem- oY DT perature shows strong dependence on the RC depicting the thermodynamics. An- 3. SI 1R other way to obtain the melting temperature is via the temperature-dependence of 4.E m. 201UNIV sepneecrig¯ycahseatcapacityCv,whichcanbecalculatedthroughthe°uctuationofthetotal heK ut. CYOR C ¼ ðhE2i(cid:1)hEi2Þ: mpW v RT2 oE CN or. by Asthetemperatureapproachesthemeltingtemperaturefrombothdirections,there The willbeaclearspikeinCv theoretically.The¯ttedcurveofCv isshowninFig.6(b). J. Optimized parameters through Monte Carlo indicate a melting temperature of 329K, which is only 12K higher than the experimental measurement. Zhou et al.39 used OPLS force ¯eld combined with explicit water model to study the melting temperature of Trp-cage by REMD simulation. The reaction coordinate they chose wasnativecontactandtheobtainedmeltingtemperaturewashigherthan400K.In our study, melting temperature corresponding to native contact is about 339K. Piteraetal.9usedAMBER94force¯eldtostudyTrp-cageandtheheatcapacitywas used to study folding-unfolding transition. They found a clear pike of heat capacity from 373K to 433K. Our calculation shows a better result by using heat capacity. The FEL mapped to backbone RMSD and the distance between the titratable groupsinArg16andAsp9isshowninFig.7.Itcanbeseenthatthesalt-bridgehas anevendistributioninbothfoldedandunfoldedstateintheregionwithRMSDfrom 1(cid:3)A to 3(cid:3)A. Just as Zhou has pointed out,39 this salt bridge can stable not only the 1450026-10
Description: