ebook img

Fodder Yeast and Biogas Production PDF

54 Pages·2016·5.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fodder Yeast and Biogas Production

Faculty of Natural Resources and Agricultural Sciences Fodder Yeast and Biogas Production: A Fruitful Symbiosis? – Optimization of a Single-Cell Protein Process and Examination of its Impact on Biogas Output Jonas Ohlsson Department of Microbiology Master's Thesis • 30 hec • Second cycle, A2E Agriculture Program – Food Science • Examensarbete/Sveriges lantbruksuniversitet, Institutionen för mikrobiologi, 2016:5 • ISSN 1101-8151 Uppsala 2016 Fodder Yeast and Biogas Production: A Fruitful Symbiosis? - Optimization of a Single-Cell Protein Process and Examination of its Impact on Biogas Output Jonas Ohlsson Supervisor: Su-lin Hedén, Swedish University of Agricultural Sciences, Department of Microbiology Assistant Supervisor: Matilda Olstorpe, Swedish University of Agricultural Sciences, Department of Microbiology Examiner: Volkmar Passoth, Swedish University of Agricultural Sciences, Department of Microbiology Credits: 30 hec Level: Second cycle, A2E Course title: Independent project/degree project in Food Science – Master’s thesis Course code: EX0425 Programme/education: Agriculture Programme – Food Science Place of publication: Uppsala Year of publication: 2016 Cover picture: Jonas Ohlsson Title of series: Examensarbete/Sveriges lantbruksuniversitet, Institutionen för mikrobiologi No: 2016:5 ISSN: 1101-8151 Online publication: http://stud.epsilon.slu.se Keywords: fodder yeast, biogas, nutrient recycling, Wickerhamomyces anomalus, Pichia kudriavzevii, Blastobotrys adeninivorans Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Uppsala BioCenter Department of Microbiology Abstract Duetoagrowingworldpopulationandstrainedwildfishstocks,aquaculture isexpectedtoprovidealargepartoftheincreasedglobaldemandforanimal protein,asthemajorityofwildfishstocksarealreadybeingfishedatorabove their sustainable capacity. However, fish feed often contains a significant amount of fish meal, produced from wild-caught fish. Thus, increasing farmedfishproductionmaynotbesustainableaslongasfishmealremainsa majoringredient. Microbialbiomass,commonlyknownassingle-cellprotein(SCP),can replacefishmealinfeedformulations. ThefinancialviabilityofSCPpro- duction is dependent on the availability of cheap growth media. Biogas substrates,oftenmixturesofwastederivedfromfoodindustry,agriculture, andhouseholds,couldbeidealmediaduetotheirlowcostandubiquitous availability. Theaimsofthisthesiswere: first,toinvestigatewhetheryeastSCPcan beproducedonabiogassubstrateconsistingofhouseholdandagricultural waste; second, to screen several yeast strains and growth conditions for optimal biomass production; and third, to evaluate the effects on biogas productionifpartofinputsubstratestreamisdivertedintoSCPproduction priortofurtherdigestioninthebiogasreactor. SeveralyeaststrainswerescreenedforbiomassyieldatseveralpHlev- els and temperatures. After screening, best-performing strains were culti- vatedonbiogassubstrateincontinuously-stirredbioreactors,analyzingthe resultant biomass. Strains were Wickerhamomyces anomalus J121, Pichia kudriavzeviiJ550,andBlastobotrysadeninivoransJ564. Harvestedbiomass rangedfrom7.0–14.8gdrymatterperlsubstrate,andproteincontentswere 22.6–32.7%. Levelsoftheaminoacidlysinewerehighinallbiomasssamples, whichisimportantforreplacingfishmealinfeedformulations. Supernatants from the bioreactor fermentations were combined with wholebiogassubstrate,andtheeffectsonbiogasproductionwereevaluated, asmethaneproducedpergofvolatilesolids,usingabatchmethanepotential assay. At the highest inclusion levels (1:1 control/supernatant (w/w)) P. kudriavzeviiprovidedanincreasedoutputcomparedtoW.anomalus(25%, p = 0.04). P. kudriavzevii provided a 24% increase compared to control, butresultswerenotsignificant(p =0.06). Filtered,untreatedsupernatant providedthelargestincreaseinbiogasproductioncomparedbothtocontrol substrate(30%, p =0.02)andtoW.anomalus(31%, p =0.01). 1 Sammanfattning I takt med en ständigt växande världsbefolkning förväntas efterfrågan på animalisktproteinöka.Akvakultur,ellerfiskodling,kommersannoliktatt bidratillenstordelavdenförväntatökandeproduktionen.Produktionen från majoritetenavvilda fiskbestånd beräknasintekunnaöka ytterligare, ochenstorandelklassasredansomöverfiskade.Dåfiskmjöl,somframställs frånvildfångadfisk,utgörenviktigingrediensifiskfoderärdetintesäkertatt enutökadproduktionavodladfiskärhållbar,ochalternativaproteinkällor ärdärförefterfrågade. En sådan proteinkälla utgörs av mikrobiell biomassa, eller singelcell- protein (SCP). För storskalig produktion av SCP krävs tillgång till billigt tillväxtmedium.Biogassubstrat,oftaenblandningavavfallfrånlivsmedels- och jordbrukssektorn samt hushåll, skulle kunna utgöra ett idealt sådant mediump.g.a.desslågakostnadsamthögatillgänglighet. Syftet med detta arbete var tredelat: att undersöka om SCP från jäst kanproduceraspåbiogassubstratbeståendeavhushålls-ochjordbruksavfall; vidareattutvärderaflerajäststammarsamtodlingsbetingelserföroptimal tillväxt; och slutligen att utvärdera effekten på biogasproduktion om jäst odlaspåendelavbiogassubstratetföredessintroduktionibiogasreaktorn. Ett antal jäststammar utvärderades för biomasseproduktion vid flera temperaturersamtpH-nivåer.Demesthögproducerandestammarnaodlades sedanpåbiogassubstratifermentorer,ochdenproduceradebiomassananaly- serades.DessavarWickerhamomycesanomalusJ121,PichiakudriavzeviiJ550 ochBlastobotrysadeninivoransJ564.Fermentationernaresulteradeislutlig biomassapå7.0–14.8gperlsubstrat,ochinnehöll22.6–32.7%protein. Supernatanternafrånodlingarnablandadesmedorörtbiogassubstratoch utvärderadesförmetanproduktion,sommängdmetanpergglödförlust,iett batchförsök.Viddenhögstagradeninblandning(obehandlatsubstratoch supernatantiett1:1-förhållandebaseratpåvikt)produceradeproverbase- radepåP.kudriavzevii25%merbiogasjämförtmedmotsvarandefrånW. anomalus(p =0.04).En24%-igökningkundesesdåsupernatantfrånP.kud- riavzeviiJ550jämfördesmedkontrollsubstrat,mendettaresultatuppnådde inte statistisk signifikans (p = 0.06). Den största ökningen av biogaspro- duktion sågs vid tillsats av obehandlat, filtrerat substrat, som presterade bättreänbådeobehandladkontroll(30%), p =0.02)ochW.anomalus(31%, p =0.01). 2 Contents 1 Introduction 5 1.1 Aquacultureandfishfarming 6 1.1.1 FishfarminginEuropeandtheNordiccountries 7 1.1.2 Feedcompositionandingredients 7 1.2 Single-cellprotein 8 1.2.1 Productionofsingle-cellprotein 8 1.2.2 Commercialexamples 9 1.2.3 Microbialfishfeed 10 1.3 Theanaerobicdigestionprocess 11 1.3.1 Overview 11 1.3.2 Evaluatingmethanepotential 12 2 Overviewandcommonmethods 13 2.1 Overviewofexperiments 13 2.2 Commonmaterialsandmethods 13 2.2.1 Biogassubstrateandinoculum 13 2.2.2 Culturemediaandchemicals 14 2.2.3 Yeaststrains 14 2.2.4 Yeastinoculumpreparation 15 2.2.5 Viablecellcountsandbiomassmeasurements 16 2.2.6 Bioreactoroperation 17 2.2.7 Chemicalanalyses 17 2.2.8 Statisticalanalyses 17 3 Yeastscreening 18 3.1 Materialsandmethods 18 3.2 Results 19 4 Effectonmethanepotentialbyyeasttreatmentofsubstrate 19 4.1 Materialsandmethods 20 4.2 Results 22 5 Scale-upexperiments 24 5.1 Materialsandmethods 24 5.2 Results 24 6 Discussion 27 7 Conclusions 31 3 Appendices 36 List of Tables 1 Chemicalcharacterizationofthebiogassubstrate 14 2 Culturemediaandsolutions 16 3 Yeaststrainsusedinthisthesis 16 4 Overviewoftreatmentsincludedinthemethanepotential assay 21 5 Nutritionalcharacteristicsoftheyeastbiomass 25 6 Biomassconcentration,proteincontent,andproductivity 29 D Aminoacidcompositionofthefinalwashedpellets 46 E Chemical characterization of the biogas substrate during differentstagesofprocessing 47 List of Figures 1 Worldfisheriesandaquacultureproductionbyyear,1950–2013 7 2 World fisheries, aquaculture, and livestock production by year,1961–2012 8 3 Overviewoftheanaerobicdigestionprocess 12 4 Biogassubstratebeforeandafterfiltration 15 5 Example96-wellplatelayoutusedinscreeningexperiment 18 6 LightmicrographsofW.anomalusJ121fermentersamples 22 7 Specific methane potential for untreated whole substrate withaddedsupernatant 23 8 Relativeessentialaminoacidcompositionofyeastpellets 26 A1 Screeningresultsfor30°C 36 A2 Screeningresultsfor25°C 36 A3 Screeningresultsfor37°C 37 A4 Screeningresultsfor30°C 37 A5 Screeningresultsfor30°C 38 A6 ScreeningresultsfordeterminingoptimumpH 38 C1 CFUcountsforcultivationofyeaststrainsonfilteredbiogas substrate,BMPassay 43 C2 CFUcountsfromthescale-upfermentations 44 C3 Drymatterestimatesfromthescale-upfermentations 45 4 Acronyms and abbreviations AA Aminoacid AD Anaerobicdigestion BMP Biomethanepotential CFU Colonyformingunit CL Crudelipid CP Crudeprotein CSTR Continuouslystirredtankreactor EAA Essentialaminoacid FM Fishmeal FO Fishoil GHG Greenhousegas IHT Inter-specieshydrogentransfer OD Opticaldensityat600nm 600 RNA Ribonucleicacid QPS Qualifiedpresumptionofsafety SCP Single-cellprotein TS Totalsolids VS Volatilesolids 1 Introduction Withaneverincreasingworldpopulation,resourcescarcityisexpectedto become a global problem. In 2050, the world population is expected to reach9.6billion(FAO,2014),whichwilllikelyputastrainontheworld’s foodandenergysupplies. Tomeettheheighteneddemand,effortstowards increasingfoodandenergyoutputsarerequired. Increasingtheseoutputs does come with its own cost however, as the world’s supply of natural resources (including, but not limited to, fossil fuels and phosphorus) are furtherdiminishedwhilepromotinghigherratesofgreenhousegas(GHG) emissionsbytheburningoffossilfuels. Aquaculture,andespeciallythepracticeoffishandshellfishfarming,has suppliedasubstantialportionoftheincreaseddemandforanimalprotein during the last few decades, and is expected to continue doing so as the world’s population grows larger. It is the fastest growing primary animal food producing sector, exhibiting an average annual rate of expansion of 6.2%intheyears2000–2012(FAO,2014). Althoughfarmedfishandshellfish exhibitgoodfeedconversionratioscomparedtomanyotherfarmedanimals, alargepartofaquacultureisstilldependentondecreasingmarinefishstocks 5 forfeed. Dwindlingsuppliesandincreasingpricesmeanthatalternativesto fishmeal(FM),suchassoyameal,arebeingusedasreplacements. AnotherFMalternativeismicrobiallyproducedbiomass,anovelsource ofcaloriescommonlyknownassingle-cellprotein(SCP;MatelbsandTan- nenbaum(1968)). Althoughnotentirelycomprisedofprotein,thismacronu- trienthasusuallybeenthefocusofsuchproducts. Theseproductsmaybe marketedeitherforhumanconsumption,orasingredientsofanimalfeed. SCP has several benefits compared to other feedstocks: large amounts of biomass can be manufactured in short time; organisms used for SCP pro- ductionnormallyhavelownutrientrequirements;oftenthesubstratesused arelow-valuecommodities,orsidestreamsandwasteproductsfromother manufacturingprocesses. ToreduceGHGemissionsandpromoteenergyindependenceandenergy securityasfossilfuelsbecomescarcer,methodsforbioenergyproduction are the focus of much research. Biogas production is one such method, wherebywasteproductsareconvertedintoenergy-richmethane(CH )and 4 nutrient-richfertilizer(digestate)inananaerobicdigestion(AD)process. Nutrient recycling and efficient use and generation of energy are im- portant factors for sustaining the world in light of what’s been discussed above,andtheirimportancewillincreasewithresourcescarcity. Feedinga growingworldpopulationusingfewerresourceswilllikelybecomeoneof themostpressingissuesofthiscentury. Theaimofthisthesisistoinvesti- gateacombinedSCPandbiogasproductionusingthesamesubstrate,and assesswhetheritrepresentsanovelwayofincreasingresourceutilization andnutrientrecycling. 1.1 Aquaculture and fish farming Aquaculturereferstothecultivationofwater-livingcreaturessuchasfishes andmollusks,butalsoaquaticplants. However,thefocusonaquaculture in this thesis refers exclusively to finfish, as this is the group of aquacul- ture organisms that are the intended recipients of the SCP product being developed. Sincethebeginningofthe1980s,theincreaseinworldfishproductionis entirelyduetofarmedfish(FAO,2014;seeFig.1). Ifcurrenttrendscontinue, itwillbecomethelargestanimalfoodproducingsectorinafewyears. In Fig.2,bothfishandlivestock(includingchicken)productionaredisplayed forcomparison(FAO(2014,2016). 6

Description:
Airlift fermenters do not have impellers, but instead inject such as Lactobacillus vini, which are able to aggregate with a number of yeast species
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.