ebook img

Fock-state stabilization and emission in superconducting circuits using dc-biased Josephson junctions PDF

0.51 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fock-state stabilization and emission in superconducting circuits using dc-biased Josephson junctions

Fock-statestabilizationandemissioninsuperconductingcircuitsusingdc-biasedJosephson junctions J.-R. Souquet, A.A. Clerk DepartmentofPhysics,McGillUniversity,3600rueUniversity,Montreal,Quebec,H3A2T8,Canada (Dated:January21,2016) We present and analyze a reservoir-engineering approach to stabilizing Fock states in a superconducting microwavecavitywhichdoesnotrequireanymicrowave-frequencycontroldrives. Instead,oursystemmakes useofaJosephsonjunctionbiasedbyadcvoltagewhichiscoupledbothtoaprinciplestoragecavityanda secondauxiliarycavity. OuranalysisshowsthatFockstatescanbestabilizedwithanextremelyhighfidelity. 6 Wealsoshowhowthesamesystemcanbeusedtoprepareon-demandpropagatingFockstates,againwithout 1 theuseofmicrowavepulses. 0 2 Introduction– The ability to prepare, stabilize and ulti- n a matelytransmitnon-trivialquantumstatesiscrucialtoquan- J tum information processing [1]. In the presence of dis- 0 sipation, state stabilization can be accomplished either via 2 measurement-plus-feedback schemes (see e.g. [2–9]), or autonomously, using quantum reservoir engineering (QRE) ] FIG.1. Schematicoftheproposedsetup. AdcbiasedJosephson l techniques[10,11]. Therehasbeenconsiderableprogressin l junctionofenergyEJ isinserieswithtwocavities.Eachcavityhas a implementingQREideasinsuperconductingcircuits,includ- animpedanceclosetoR =h/e2,andisdampedviaacouplingto h ingexperimentswhichhavestabilizedqubitstates[11–13]as atransmissionline. K - s wellasphotonicFockstates[14]insidemicrowavefrequency e cavities. Theseschemesaretypicallycomplex, requiringthe m useofseveralhigh-frequencymicrowavecontroltones. statesondemand. IncircuitQEDsetups,propagatingsingle- . t Inthiswork,weanalyzeanalternativeapproachtothesta- photonstatesareusuallygeneratedbydrivingmicrowavecav- a m bilization of Fock states in a superconducting resonant cav- ities coupled to a qubit with high-frequency control pulses, ity which requires no microwave control tones. The starting seee.g.[26]. Amongthemanychallengesinthestandardap- - d pointforourschemeisasetupdiscussedinanumberofrecent proachistherequirementthatthegeneratedphotonshouldbe n theoreticalstudies[15–17]andexperiments[18–21],wherea far detuned from the frequency of the control pulse [27–29]. o microwave cavity is coupled to a dc-biased Josephson junc- Our system is capable of on-demand Fock state generation c tion. Thedrivenjunctiondoesnotactlikeaqubit,butrather without any microwave control pulses: one simply needs to [ asahighlynon-lineardrivingelement. Thatsuchasetupcan pulseadccontrolvoltage. 2 produce nonclassical photonic states was first pointed out in Biased junction as a nonlinear drive– To set the stage v 7 Ref. [16], which showed that states could be produced hav- for our two-cavity system, we start by quickly reviewing the 7 ingsuppressednumberfluctuationsandavanishingg(2)inten- physicsoftheone-cavityversion,asstudiedin[15,16]. The 0 sitycorrelationfunction. Whilethesestatesviolateaclassical system consists of a Josephson junction coupled to a cavity 5 Cauchy-Schwarzinequality,theyaremixturesofthevacuum (frequency ω , modeled as an LC resonator), such that the c 0 andtheonephotonFockstate,andhavealimitedfidelitywith voltage across the junction is the sum of an applied external . 1 apureFockstate. Asaresult,theydonotexhibitanynegativ- dc voltage V and fluctuating voltage Vˆ associated with dc cav 0 ityintheirWignerfunctions[22]. thecavitymode. Thecavityisalsocoupledtoatransmission 6 1 Here, we show how optimally coupling the junction to a line, which is treated (as standard) as a Markovian reservoir, : secondcavity(asdepictedinFig.1)letsonetranscendthelim- andwhichgivesrisetoanenergydampingrateκ. Wefocus v itationsofthesinglecavitysystem,andpreparesingle-photon exclusivelyontemperatureandvoltagessmallenoughthatsu- i X Fockstateswithanextremelyhighfidelity. Suchtwo-cavity- perconductingquasiparticlesareneverexcited. r plus-junctionsystemshaverecentlybeenrealizedexperimen- Working in an interaction picture at the cavity frequency, a tally[18],andhavealsobeendiscussedtheoretically[23–25], theHamiltonianofthecavityplusbiasedjunctionis[15,16, largelyinthecontextofgeneratingcavity-cavitycorrelations. 25,30] Armouretal.[24]foundnumericallythatsuchasystemcould generatecavitystateswithweaklynegativeWignerfunctions; E (cid:16) (cid:17) they did not however discuss Fock state stabilization, or the HˆJ =− 2J e2ieVdctDˆ[α(t)]+e−2ieVdctDˆ†[α(t)] , (1) particularmechanismweelucidateandoptimize. Inadditiontoefficientandhigh-fidelityFockstatestabiliza- where E is the Josephson energy, and Dˆ[α(t)] is the cav- J tion,weshowthatoursetupcanalsoplayanothercrucialrole: itydisplacementoperator(correspondingtoatime-dependent itcanactasanefficientmeansforproducingpropagatingFock displacementα(t)). Itisdefinedintermsofthephotonanni- 2 state is reached [14]. For concreteness, suppose we chose V =kΩ/2e(kaninteger),sothattoleadingorder,Cooper- dc pairs can only tunnel by emitting or absorbing k cavity pho- tons. Ifwetakeω (cid:29)E ,κwecanrestrictattentiontothese c J processesandmakearotating-waveapproximation(RWA)to ourfullHamiltonian. WithintheRWAwehave: ∞ Hˆ =(−1)k+1EJ (cid:88)w [λ]|n+k(cid:105)(cid:104)n|+h.c.. (6) RWA 2 n+k,n n=0 Considerthesimplestcasewherek =1,andeachresonantly- tunnellingCooperpairemitsorabsorbsasingecavityphoton. √ FIG.2. Matrixelementswn+l,n[λ]forjunction-drivencavityFock Ifwethensetλ = 1/ 2 ≡ λ˜ , thereisnomatrixelement state transitions, as a function of the zero-point voltage fluctuation 2,1 inEq.(6)foratransitionfrom1to2cavityphotons. Asfirst amplitude λ for different values of n and l. These functions are discussed in Ref. [16], the junction induced drive now can highlynon-linearwithrespecttoλ,andcancancelforspecificval- ues.Rootsofw [λ],denotedλ˜ ,areindicatedinthefigure. addatmostonephotontothecavity,implyingthatthesystem n+l,n n+l,n effectivelyactslikeadriventwo-levelsystem. The cavity steady-state is found by solving the Linblad hilationoperatoraˆas masterequationforthedensitymatrixofthecavityρˆ , c Dˆ[α(t)]=eα(t)aˆ†−α∗(t)aˆ, α(t)=2λeiωct. (2) ρˆ˙c =−i[HˆRWA,ρˆc]+κL[aˆ]ρˆc, (7) which includes the dissipation from the (zero-temperature) λdeterminestheamplitudeofthezero-pointvoltagefluctua- (cid:112) transmissionline;here,L[aˆ]ρˆ=aˆρˆaˆ†− 1{ρˆnˆ+nˆρˆ}. When tions in the cavity, and is given by λ = πe2Z/h where Z 2 λissettoλ˜ ,thestationaryintracavitystatecanbetermed theimpedanceoftheLCresonator. 2,1 Fromthepointofviewofthecavity,Hˆ describesahighly- non-classical, in that it results in a vanishing g(2) intensity- J intensity correlation function [16]. This simply reflects the nonlinear(butcoherent)cavitydrive[16]:eachtermtunnelsa factthatthereiszeroprobabilityforhavingtwoormorepho- Cooper-pair,andalsodisplacesthecavitystateby±α(t). To tons in the cavity. We are still far however from our goal of see clearly how these displacements can result in Fock state producingasingle-photonFockstate. Asthecavityiseffec- generation,wefollowadifferentroutefrom[16],andexpress Dˆ[α(t)]directlyintheFockbasis(see,e.g.[31]): tively a driven two-level system, population inversion is im- possible,andatbestthesteadystateisanincoherentmixture ∞ ∞ havinganequalprobabilityofvacuumandsinglephoton. We Dˆ[α(t)]= (cid:88)(cid:88)w [λ]|n(cid:105)(cid:104)n+l|e−ilωct stress that such a state exhibits no negativity in its Wigner n,n+l n=0l=0 function. ∞ Fock state stabilization– Heuristically, the poor perfor- (cid:88) + (−1)l|n+l(cid:105)(cid:104)n|wn+l,n[λ]eilωct. (3) manceofthesingle-cavitysetupiseasytounderstand:evenif l=1 weeliminatethematrixelementfor|1(cid:105)→|2(cid:105)transitions,the junction-driven cavity continues to oscillates back and forth Here,thetransitionamplitudew [λ]isnothingmorethan n,n+l betweenthevacuumandthe|1(cid:105)Fockstate(eventuallyrelax- ageneralizedFrank-Condonfactor. Forl≥0wehave: ingintoamixedstate). ToachievetrueFockstategeneration, w [λ]=e−2λ2(2λ)l(cid:113) n! L(l)(4λ2), (4) one needs to shut off the oscillation dynamics when the sys- n+l,n (n+l)! n temisinthe|1(cid:105)state.Aswenowdiscuss,thiscanbeachieved rathersimplybycouplingthejunctiontoasecond“auxiliary” where L(k) is a Laguerre polynomial [32], and w [λ] = n n+l,n cavity (see Fig. 1) whose damping rate κ is taken to be aux w [−λ]. n,n+l sufficientlylarge. Asiswellknown,Frank-Condonfactorsarehighlynonlin- In what follows, we denote quantities for the main “stor- ear functions of the magnitude of the displacement (here set age”cavitywithasubscript“s”,whileauxiliarycavityquan- by λ), and can even exhibit zeros [33]; the behavior of rele- titieshaveasubscript“aux”;Fockstatesofthetwo-modesys- vantfactorsisshownFig.2.Weletλ˜ denotethesmallest n+l,n temaredenoted|n,m(cid:105)=|n(cid:105) ⊗|m(cid:105) . Workinginaninter- s aux valueofλwhichmakesw [λ]vanish: n+l,n actionpicturewithrespecttothefreecavityHamitonians,the systemHamiltonianis(hereandthroughoutthetext,(cid:126)=1), w [λ˜ ]=w [λ˜ ]=0. (5) n+l,n n+l,n n,n+l n+l,n HˆJ =−E2Je2ieVdctDˆ[αs(t),αaux(t)]+h.c.. (8) The route to preparing single Fock states now seems clear: by tuning the value of both V and λ (via the cavity Here Dˆ[α (t),α (t)] = Dˆ [α (t)]⊗Dˆ [α (t)] is the dc s aux s s aux aux impedance Z), one can arrange for the effective driving of tensorproductofdisplacementoperatorsforeachcavity,with the cavity by the the junction to shut off when a given Fock respectivedisplacementamplitudesαj(t)=2λjeiωjt. 3 FIG. 3. Schematic depictions of biased-junction cavity pumping processes. The boxed digit indicates the number of Cooper pairs thathavetunnelled,whereasdotsintheparabolasindicateintracavity photon number. a) Single cavity setup for an impedance yielding λ = λ˜ . Cooper-pairtunnellingcantakethecavitybetweenthe0 2,1 and1photonstates,buttransitionstothe2-photonstateareblocked. b)Two-cavitysetupforFockstatestabilization, whereλ = λ˜ . s 2,1 Startingfromvacuum,Cooper-pairtunnelingcancauseoscillations betweenthe|0,0(cid:105)and|1,1(cid:105)photonFockstates.Photondecayfrom theauxcavityhoweverfreezesthesystemintothedesired|1,0(cid:105)state. Whenthestoragecavityphotondecays(duetoκ ),thecyclerepeats. s FIG.4. Steady-stateprobabilityp [n]forthestoragecavitytobe s in a Fock state |n(cid:105), as obtained from the RWA master equation in Eq.(10).WetakeE =κ (cid:28)ω ,ω ,andλ =1/2;λ and Fortheauxiliarycavitytoplaythedesiredrole,wetunethe J aux s aux aux s κ areindicatedintheplots.(a)Probabilitieswhenλ istunedclose s s voltagesothatVdc =(ωs+ωaux)/2e. Cooper-pairtunnelling toλ˜ (forstabilizing|1(cid:105)).(b)Same,forλ tunedclosetoλ˜ (for 2,1 s 3,2 thusrequiressimultaneouslyemittingasinglephotontoeach stabilizing |2(cid:105)). Even with imperfect tuning, the target Fock state cavity(orabsorbingaphotonfromeachcavity). Wealsotune isstabilizedwithahighfidelity. (c)and(d)CorrespondingWigner thestoragecavityimpedancesothatλ =λ˜ ;westressthat functionW[α]forthestoragecavitystate,showingthatnegativeval- s 2,1 nospecialtuningofλ isneeded.Theresultingdynamicsis uesareobtained;notethatW[α]isrotationallyinvariantinallcases. aux sketchedinFig.3b.Similartothesingle-cavitysystem,theef- fectivedrivingfromthebiasedjunctioncouples|0,0(cid:105)to|1,1(cid:105), Linbladmasterequation: butnottostateswithhigherphotonnumber. Wewouldseem yetagaintohaveaneffectivetwo-levelsystem,andmightex- ρˆ˙ =−i[Hˆ ,ρˆ]+κ L[aˆ ]ρˆ+κ L[aˆ ]ρˆ. (10) RWA aux aux s s pectcoherentoscillationsbetweenthesetwostates. However, the large damping rate κaux of the auxiliary cavity prevents Considerfirsttheidealcase,whereλs istunedperfectlyto this: ifthesystemisinthe|1,1(cid:105)state,κauxwillcausearapid equal λ˜2,1. In the relevant limit κs (cid:28) κaux, the steady state decay to |1,0(cid:105). In the absence of storage cavity damping, probabilitythatthesystemisinthedesiredstate|1,0(cid:105)is the system is then effectively stuck: Cooper-pair tunnelling against the voltage is impossible (as there are no photons in Γ (E w [λ ]w [λ ])2 (cid:104)1,0|ρˆ|1,0(cid:105)(cid:39) , Γ= J 1,0 s 1,0 aux , theauxcavity),whiletunnellingwiththevoltageisimpossi- Γ+κ κ s aux bleasthereisnomatrixelementconnecting|1,0(cid:105)and|2,1(cid:105). (11) Includingstoragecavity-dampingdoesnotruinthephysics:if whereΓplaystheroleofaneffectivepumpingratefrom|0,0(cid:105) thestoragecavityphotonleaksout,oneisbackinthevacuum to|1,0(cid:105),andwehavedroppedtermsassmallasκs/κaux.The state,andtheprocessstartsagain. Onethusseesthepossibil- probability to be in the desired state tends to 1 in the limit ity for having a steady state that has a high fidelity with the Γ (cid:29) κaux (cid:29) κs. The large |1,0(cid:105) population here is anal- state|1,0(cid:105),i.e. astabilizedsingle-photonstateinthestorage ogous to the population inversion possible in a driven three- cavity. levelsystem[34]. Tomaketheabovepicturequantitative,wefocusonavolt- Theaboveprocesscanbeefficientevenifthestoragecavity ageVdc = (ωaux+ωs)/2e,andmakeaRWAonourHamil- impedance is not perfectly tuned. Suppose λs = λ˜2,1 + ε tonian,yielding: with ε (cid:28) 1. Assuming again κs (cid:28) κaux, one finds that the probabilitytobein|1,0(cid:105)ismodifiedtobe: (cid:32) ∞ (cid:33) Hˆ = EJ (cid:88) w [λ]|n +1(cid:105)(cid:104)n | Γ RWA 2 ns+1,ns s s (cid:104)1,0|ρˆ|1,0(cid:105)(cid:39) . (12) Γ+κ +4ε2Γ2/κ ns=0 s s (cid:32) ∞ (cid:33) (cid:88) Becauseoftheimperfecttuningofλ ,itisnolongeradvanta- ⊗ w [λ]|n +1(cid:105)(cid:104)n | +h.c.. (9) s naux+1,naux aux aux geoustohaveΓ (cid:29) κ (i.e.largeE ),astransitionstohigher s J naux=0 states will corrupt the dynamics. Eq. (12) suggests that an Eachcavityisalsocoupledtoitsownzerotemperaturebath, optimalchoicewouldbetohaveκ = 2εΓ(whilestillmain- s andthereduceddensitymatrixρˆofthetwocavitiesobeysthe tainingκ (cid:29)κ ). aux s 4 To complement the above analytical results, we have per- formedafullnumericalsimulationoftheRWAmasterequa- tioninEq.(10)usingtheQuTiPpackage[35]. Fig.4ashows thestationarystoragecavityFockstatedistributionasafunc- tionofλ ,anddemonstratesthathigh-fidelityFockstategen- s eration is possible despite an imperfect tuning of the storage cavity impedance. The fidelity is sufficient to give rise to storage-cavity Wigner function that exhibit large amounts of negativity(asshowninFig.4c). The above protocol can also be used to stabilize higher Fock states with a good fidelity. One keeps the voltage set to V = (ω +ω )/2e, but now tunes the storage cavity dc s aux impedance such that λ = λ˜ for some chosen n > 1. s n+1,n The system dynamics will now effectively get stuck in the state |n,0(cid:105). Numerical results for the case n = 2 are shown FIG.5. Timedependenceofstoragecavityphotonnumberoccu- inFig.4bandd. panciesp [n,t],wherethebiasV =(ω +ω )/2eisturnedon Westressthatthegeneralschemeherecanbeviewedasan s dc aux s att=0,andthecavitiesstartfromvacuum.Dashedline:κ chosen s example of reservoir engineering [10], with the biased junc- to optimize the steady-state value of p [1,t] (the Fock-state stabi- s tionandauxiliarycavityactingasaneffectivedissipativeen- lizationprotocol). Solidline: alternatechoiceofκ whichoptimize s vironment which stabilizes the storage cavity in the desired p [1,t]atintermediatetimes(pulsedprotocol).Inthislatterprotocol, s Fockstate. Inthatrespect,ourprotocolhassimilaritiestothe thevoltagecanbeturnedofneartoff,resultingwithhigh-probability Fock-statestabilizationschemedescribedandimplementedin intheproductionofapropagatingFockstateinthetransmissionline coupledtothestoragecavity. Inbothcases,weassumetherealistic Ref.[14]. Inthatwork,theengineeredreservoiralsoinvolved situation where the cavity impedance has not been tuned perfectly anauxiliarycavity,butusedaqubitandtwomicrowavecon- (here,λ=0.95λ˜ ). Theinsetshowsp [n,t→∞]forthepulsed 21 s trol tones (or more, if the target Fock state has n > 1). In protocol. ourwork,theauxiliarycavityisstillthere,butthemicrowave control tones and qubit have been replaced with a Joseph- son junction biased by a dc-voltage. Note that conversely to having a single storage-cavity photon is a rather broad func- Ref. [14], reaching higher Fock states does not require addi- tionoftime,meaningthatonedoesnotneedprecisecontrolof tionalresources. theshut-offtimeofthedc-voltage. Thisisinstarkcontrastto Itinerant Fock states on demand– The above protocol for standardprotocolsforpreparingaFockstateusingtwo-level stabilizingFockstatescannaturallybeusedtoproduceprop- system dynamics (e.g. in the one-cavity version of our sys- agatingFockstates: afterthedesiredFockstatehasbeensta- tem),whereoneneedsaprecisecontrolofthedurationofthe bilized,onesimplyturnsoffthedcbiasvoltagewhentheitin- pulsescontrol. erantphotonisdesired,andthestoragecavityFockstatewill Conclusion– We have shown how a system where a beemittedintothetransmissionlinecoupledtoit(inatempo- voltage-biased Josephson junction is coupled to two cavities ralmodehavinganexponentialprofile[36,37]). Analternate can be used to stabilize Fock states with a high efficiency. strategy is to exploit the transient dynamics of our scheme, While our approach does require one to carefully tune the andproduceanitinerantFockstatewithapulseddcvoltage. impedance of the main storage cavity, it does not require Inthiscase,oneoptimizesparameterstohaveahigh-fidelity any microwave-frequency control tones. We also discussed intra-cavityFockstateatanintermediatetime,asopposedto howthesamesetupcouldbeusedtoproduceitinerantsingle- in the long-time steady state. The voltage is then turned off photonsondemand. atthisintermediatetime. Thismakesitpossibletoachievea ThisworkwassupportedbyNSERC. highfidelityFockstateevenifthetuningofthestoragecavity impedanceisnotperfect,i.e.λ (cid:54)=λ˜ .Inaddition,bychoos- s 2,1 ing parameters such that the oscillation dynamics associated with Cooper-pair tunnelling is slightly overdamped, one can haveaprotocolwhichisrelativelyinsensitivetothetimingof [1] T.D.Ladd,F.Jelezko,R.Laflamme,Y.Nakamura,C.Monroe, thevoltagepulse. andJ.L.O’Brien,Nature464,45(2010). In Fig. 5, we show a comparison between the steady-state [2] A.R.CalderbankandP.W.Shor,Phys.Rev.A54,1098(1996). stabilizationprotocolandthispulsedprotocol,whereλ devi- [3] R.J.Nelson,Y.Weinstein,D.Cory, andS.Lloyd,Phys.Rev. s atesby5%fromtheidealvalueλ˜ neededforsingle-photon Lett.85,3045(2000). 2,1 [4] W.Smith,J.Reiner,L.Orozco,S.Kuhr, andH.M.Wiseman, generation. By using a smaller value of κ than the choice s Phys.Rev.Lett.89,133601(2002). thatoptimizesthesteady-statesingle-photonprobability,one [5] R.L.Cook,P.J.Martin, andJ.M.Geremia,Nature446,774 obtainsamuchhigherfidelitywithasinglephotonFockstate (2007). at intermediate times. Further, the maximum probability for [6] G.Gillett,R.Dalton,B.Lanyon,M.Almeida,M.Barbieri,G.J. 5 Pryde, J. Obrien, K. Resch, S. Bartlett, and A. White, Phys. D.Esteve, andF.Portier,Appl.Phys.Lett.103,212601(2013). Rev.Lett.104,080503(2010). [21] N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. Di- [7] C.Sayrin,I.Dotsenko,X.Zhou,B.Peaudecerf,T.Rybarczyk, Vincenzo, L. DiCarlo, and L. Vandersypen, arXiv preprint S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, arXiv:1511.01760 (2015). etal.,Nature477,73(2011). [22] T.HakiogammaluandA.S.Shumovsky,Quantumopticsand [8] R.Vijay,C.Macklin,D.Slichter,S.Weber,K.Murch,R.Naik, the spectroscopy of solids: concepts and advances, Vol. 83 A.N.Korotkov, andI.Siddiqi,Nature490,77(2012). (SpringerScience&BusinessMedia,2013). [9] D.Riste,M.Dukalski,C.Watson,G.deLange,M.Tiggelman, [23] J. Leppa¨kangas, G. Johansson, M. Marthaler, and M. Fogel- Y.M.Blanter,K.Lehnert,R.Schouten, andL.DiCarlo,Nature stro¨m,Phys.Rev.Lett.110,267004(2013). 502,350(2013). [24] A. Armour, B. Kubala, and J. Ankerhold, Phys. Rev. B 91, [10] J. Poyatos, J. Cirac, and P. Zoller, Phys. Rev. Lett. 77, 4728 184508(2015). (1996). [25] M.TrifandP.Simon,Phys.Rev.B92,014503(2015). [11] K.W.Murch,U.Vool,D.Zhou,S.J.Weber,S.M.Girvin, and [26] A. Houck, D. Schuster, J. Gambetta, J. Schreier, B. Johnson, I.Siddiqi,Phys.Rev.Lett.109,183602(2012). J. Chow, L. Frunzio, J. Majer, M. Devoret, S. Girvin, et al., [12] S. Shankar, M. Hatridge, Z. Leghtas, K. Sliwa, A. Narla, Nature449,328(2007). U.Vool, S.M.Girvin, L.Frunzio, M.Mirrahimi, andM.H. [27] C. Eichler, D. Bozyigit, C. Lang, L. Steffen, J. Fink, and Devoret,Nature504,419(2013). A.Wallraff,Phys.Rev.Lett.106,220503(2011). [13] M. E. Schwartz, L. Martin, E. Flurin, C. Aron, M. Kulkarni, [28] M. Pechal, L. Huthmacher, and C. Eichler, Phys. Rev. X 4, H.E.Tureci, andI.Siddiqi,arXivpreprintarXiv:1511.00702 041010(2014). (2015). [29] W. F. Kindel, M. Schroer, and K. Lehnert, arXiv preprint [14] E. T. Holland, B. Vlastakis, R. W. Heeres, M. J. Reagor, arXiv:1510.00663 (2015). U.Vool,Z.Leghtas,L.Frunzio,G.Kirchmair,M.H.Devoret, [30] S. Meister, M. Mecklenburg, V. Gramich, J. T. Stockburger, M. Mirrahimi, and R. J. Schoelkopf, Phys. Rev. Lett. 115, J.Ankerhold, andB.Kubala,Phys.Rev.B92,174532(2015). 180501(2015). [31] K.E.CahillandR.Glauber,Phys.Rev.177,1857(1969). [15] A.D.Armour,M.P.Blencowe,E.Brahimi, andA.J.Rimberg, [32] Byconvention,1/(l+n)!=0forl+n<0. Phys.Rev.Lett.111,247001(2013). [33] W.Smith,JournalofPhysicsB:AtomicandMolecularPhysics [16] V.Gramich,B.Kubala,S.Rohrer, andJ.Ankerhold,Phys.Rev. 1,89(1968). Lett.111,247002(2013). [34] D.F.WallsandG.J.Milburn,Quantumoptics(SpringerSci- [17] S.Dambach,B.Kubala,V.Gramich, andJ.Ankerhold,Phys. ence&BusinessMedia,2007). Rev.B92,054508(2015). [35] J.Johansson,P.Nation, andF.Nori,ComputerPhysicsCom- [18] M. Hofheinz, F. Portier, Q. Baudouin, P. Joyez, D. Vion, munications184,1234 (2013). P.Bertet,P.Roche, andD.Este`ve,Phys.Rev.Lett.106,217005 [36] Y.Yin, Y.Chen, D.Sank,P.O’Malley, T.White, R.Barends, (2011). J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, et al., Phys. [19] F.Chen,J.Li,A.D.Armour,E.Brahimi,J.Stettenheim,A.J. Rev.Lett.110,107001(2013). Sirois,R.W.Simmonds,M.P.Blencowe, andA.J.Rimberg, [37] D.Maxwell,D.J.Szwer,D.Paredes-Barato,H.Busche,J.D. Phys.Rev.B90,020506(2014). Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and [20] C. Altimiras, O. Parlavecchio, P. Joyez, D. Vion, P. Roche, C.S.Adams,Phys.Rev.Lett.110,103001(2013).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.