FLYINGANIMALINSPIREDBEHAVIOR-BASEDGAP-AIMINGAUTONOMOUS FLIGHTWITHASMALLUNMANNEDROTORCRAFTINARESTRICTED MANEUVERABILITYENVIRONMENT ADissertation by TRACIANNSARMIENTO SubmittedtotheOfficeofGraduateandProfessionalStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof DOCTOROFPHILOSOPHY ChairofCommittee, RobinMurphy CommitteeMembers, YoonsuckChoe DylanShell MichaelSmotherman HeadofDepartment, DilmaDaSilva August 2017 Major Subject: Computer Science Copyright2017 TraciAnnSarmiento ABSTRACT Thisdissertationresearchshowsasmallunmannedrotorcraftsystemwithonboardpro- cessing and a vision sensor can produce autonomous, collision-free flight in a restricted maneuverability environment with no a priori knowledge by using a gap-aiming behavior inspiredbyflyinganimals. Currentapproachestoautonomousflightwithsmallunmanned aerialsystems(SUAS)concentrateondetectingandexplicitlyavoidingobstacles. Incon- trast, biology indicates that birds, bats, and insects do the opposite; they react to open spaces, or gaps in the environment, with a gap_aiming behavior. Using flying animals as inspiration a behavior-based robotics approach is taken to implement and test their ob- served gap-aiming behavior in three dimensions. Because biological studies were unclear whether the flying animals were reacting to the largest gap perceived, the closest gap perceived, or all of the gaps three approaches for the perceptual schema were explored in simulation: detect_closest_gap, detect_largest_gap, and detect_all_gaps. The result of these simulations was used in a proof-of-concept implementation on a 3DRobotics Solo quadrotor platform in an environment designed to represent the navigational diffi- culties found inside a restricted maneuverability environment. The motor schema is im- plemented with an artificial potential field to produce the action of aiming to the center of the gap. Through two sets of field trials totaling fifteen flights conducted with a small unmanned quadrotor, the gap-aiming behavior observed in flying animals is shown to produce repeatable autonomous, collision-free flight in a restricted maneuverability en- vironment. Additionally, using the distance from the starting location to perceived gaps, the horizontal and vertical distance traveled, and the distance from the center of the gap ii during traversal the implementation of the gap selection approach performs as intended, the three-dimensional movement produced by the motor schema and the accuracy of the motor schema are shown, respectively. This gap-aiming behavior provides the robotics community with the first known implementation of autonomous, collision-free flight on a small unmanned quadrotor without explicit obstacle detection and avoidance as seen with current implementations. Additionally, the testing environment described by quantitative metrics provides a benchmark for autonomous SUAS flight testing in confined environ- ments. Finally, the success of the autonomous collision-free flight implementation on a small unmanned rotorcraft and field tested in a restricted maneuverability environment couldhaveimportantsocietalimpactinboththepublicandprivatesectors. iii DEDICATION ToAndre,butforMichelleandherboys iv ACKNOWLEDGMENTS My time at Texas A&M University may have been short, but the list of mentors, col- leagues,friends,andfamilyIneedtothankislong. First, I would like to express my most sincere gratitude to my advisor, Dr. Robin Murphy. Your dedication, focus, and resiliency is to be admired. You pushed me to think bigger,workharder,digdeeper,andwritebetteroverthesepastthreeyears. Thankyoufor takingonthis“specialcase”. Totherestofmycommitteemembers: thankyou. Dr. Dylan Shell,youhaveauniqueabilitytoprovidefeedbackinawaythatisbothconstructiveand motivating. The time you took to dispense your point of view improved the outcome of this research. Dr. Michael Smotherman, I appreciate the insights you gave to refine my take on the ethological studies. Of course, touring your lab was one of the highlights of my time here. I can’t decide whether working with bats, or robots is more amazing! Dr. Choe,thankyoufortakingthetimetoparticipateonmycommittee. Thenumberofpeoplethatfallintothecolleaguesandfriendscategoriesaretoonumer- ous to include here, but if you’re reading this and consider yourself part of those groups pleaseacceptmyheartfeltthankyou. And now, we come to family. Simply put, I am blessed. Even if I was given the opportunity to choose all those years ago, I could not have selected two better folks to be myparent. Lind-erandDave,whoarebetterknownasGrandmaandGrandpathesedays, have been my biggest fans since day one. If I had to name the one thing that made all the difference, it was your expectations. Thank you for setting the bar high and providing me withtheskills,opportunities,andloveneededtovaultoverit. Team Sarmiento: WE DID IT!!!! Eva, those exclamations are for you. ;) Lincoln, in our time here I’ve watched you turn from our toddler ”Lincoln-big-boy-bigger” into v the amazing kindergarten graduate who wants to change his name to ”Abe”, so he can become President of the United States one day. I have no doubt you’ll achieve that dream if you channel all that energy (especially your 0500 energy), and never lose the infectious giggle or the sparkle that lights up your eyes when you smile. Eva, my sweet baby Goo, you’ve turned into a young lady right before our eyes. You’re quiet and introspective, but independent and fiercely loyal. With your heart and smarts, look out world! You told me last year you were going to visit Saturn to slide around its rings and I can’t wait to wave to you as you launch into history. Finally, Andre. There’s nothing to say except I could not have done this without you. Oh, but who are we kidding....I always have more to say. You have let me chase my dream over these last 10 years of marriage. We’re looking at move number 5 through 3 states and 2 countries. We’ve added 2 kiddos, 2 dogs, and 3 cats to Team Sarmiento over the years, and said goodbye to irreplaceable members of our family. You’vebeenmypartnerthroughitallandquietlytakencareofourhome,ourkids, our pets, our parents, and me without complaint by reinventing yourself countless times. Here’stomanymoredecadesofadventures! vi CONTRIBUTORSANDFUNDINGSOURCES Contributors This work was supported by a dissertation committee consisting of Professor Robin Murphy [advisor], Professor Yoonsuck Choe, and Professor Dylan Shell of the Depart- ment of Computer Science and Engineering and Professor Michael Smotherman of the DepartmentofBiology. Allworkconductedforthedissertationwascompletedbythestudentindependently. FundingSources Graduate study was supported by the Department of Computer Science and Engineer- ingatTexasA&MUniversity. vii NOMENCLATURE SUAS SmallUnmannedAerialSystem MAV MicroAerialVehicle FOV FieldofView APF ArtificialPotentialField IBVS Image-basedVisualServoControl PBVS Pose-basedVisualServoControl viii TABLEOFCONTENTS Page ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v CONTRIBUTORSANDFUNDINGSOURCES . . . . . . . . . . . . . . . . . . vii NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii TABLEOFCONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 ResearchQuestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 FlyingAnimalBehavior-basedAutonomousSUAS . . . . . . . . . . . . 3 1.3 ContributionsoftheResearch . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 OrganizationoftheDissertation . . . . . . . . . . . . . . . . . . . . . . 6 2. RELATEDWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 ReactiveControlofObstacleAvoidanceforSUAS . . . . . . . . . . . . . 8 2.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 PerceptualSchemasandPercepts . . . . . . . . . . . . . . . . . . 9 2.1.3 MotorSchemas . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 LimitationsofCurrentImplementations . . . . . . . . . . . . . . . . . . 12 2.2.1 OperationinTwoDimensions . . . . . . . . . . . . . . . . . . . 12 2.2.2 MotorActionsUselessinRestrictedManeuverabilityEnvironments 14 2.3 Reaction: ObstaclesversusGaps . . . . . . . . . . . . . . . . . . . . . . 14 2.4 ExperimentalEnvironmentsandMetrics . . . . . . . . . . . . . . . . . . 14 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ix 3. BACKGROUND:FLYINGANIMALS . . . . . . . . . . . . . . . . . . . . . 18 3.1 IntroductiontoEthologicalLiteratureReview . . . . . . . . . . . . . . . 18 3.2 SensorsUsedforDetection . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 PassiveSensingThroughVision . . . . . . . . . . . . . . . . . . 23 3.2.2 ActiveSensingThroughSonar . . . . . . . . . . . . . . . . . . . 24 3.3 PerceptualSchemas: Environment . . . . . . . . . . . . . . . . . . . . . 24 3.3.1 PerceptualSchema: detect_object . . . . . . . . . . . . . . . . . 25 3.3.1.1 DetectingMovingandStationaryObjects . . . . . . . . 25 3.3.1.2 DistancetoanObject . . . . . . . . . . . . . . . . . . 28 3.3.1.3 DeterminingGapSize . . . . . . . . . . . . . . . . . . 28 3.3.1.4 DeterminingObjectSize . . . . . . . . . . . . . . . . . 29 3.3.1.5 DeterminingPercentofViewSubtended . . . . . . . . 29 3.3.2 PerceptualSchema: Others . . . . . . . . . . . . . . . . . . . . . 29 3.3.2.1 DetectingAltitude . . . . . . . . . . . . . . . . . . . . 29 3.3.2.2 DeterminingDistanceFlown . . . . . . . . . . . . . . . 29 3.3.2.3 DetectingPredators . . . . . . . . . . . . . . . . . . . 30 3.3.2.4 DetectingPrey . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2.5 DetectingaMate . . . . . . . . . . . . . . . . . . . . . 30 3.3.2.6 DetectingWalls . . . . . . . . . . . . . . . . . . . . . 30 3.4 PerceptualSchemas: AdaptiveSensing . . . . . . . . . . . . . . . . . . . 31 3.4.1 DistancetoanObject . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.2 DetectingMovingandStationaryObjects . . . . . . . . . . . . . 32 3.4.3 DeterminingGapSizeandAltitude . . . . . . . . . . . . . . . . 32 3.5 MotorSchemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.1 AvoidObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5.1.1 MotorSchema: aim_gap_center . . . . . . . . . . . . . 33 3.5.1.2 MotorSchema: turn_brakeorturn_speed . . . . . . . . 35 3.5.1.3 MotorSchema: maintain_angular_velocity . . . . . . . 35 3.5.1.4 MotorSchema: stabilize_gaze . . . . . . . . . . . . . . 35 3.5.1.5 MotorSchema: adjust_pulse . . . . . . . . . . . . . . . 36 3.5.1.6 MotorSchema: adjust_beam_aim . . . . . . . . . . . . 36 3.5.1.7 MotorSchema: modify_saccades . . . . . . . . . . . . 37 3.5.1.8 MotorSchema: change_sensor . . . . . . . . . . . . . 37 3.5.1.9 MotorSchema: return_to_food . . . . . . . . . . . . . 37 3.5.1.10 MotorSchema: maintain_CATD . . . . . . . . . . . . . 37 3.5.1.11 MotorSchema: appear_stationary . . . . . . . . . . . . 38 3.5.1.12 MotorSchema: balance_lateral_motion . . . . . . . . . 38 3.6 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 x
Description: