Flux tubes in QCD with (2+1) HISQ fermions Leonardo Cosmai∗ INFN-SezionediBari,I-70126Bari,Italy 7 E-mail: [email protected] 1 0 Paolo Cea 2 DipartimentodiFisicadell’UniversitàdiBari,I-70126Bari,ItalyandINFN,SezionediBari, n I-70126Bari,Italy a E-mail: [email protected] J 2 Francesca Cuteri 1 InstitutfürTheoretischePhysik,GoetheUniversität,60438FrankfurtamMain,Germany ] E-mail: [email protected] t a Alessandro Papa l - p DipartimentodiFisica,UniversitàdellaCalabria, e &INFN-GruppoCollegatodiCosenza,I-87036Rende,Italy h E-mail: [email protected] [ 1 v We investigate the transverse profile of the chromoelectric field generated by a quark-antiquark 1 pair in the vacuum of (2+1) flavor QCD. Monte Carlo simulations are performed adopting the 7 3 HISQ/tree action discretization, as implemented in the publicly available MILC code, suitably 3 modified to measure the chromoelectric field. We work on the line of constant physics, with 0 . physicalstrangequarkmassm andlighttostrangemassratiom/m =1/20. 1 s l s 0 7 1 : v i X r a 34thannualInternationalSymposiumonLatticeFieldTheory 24-30July2016 UniversityofSouthampton,UK ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ FluxtubesinQCDwith(2+1)HISQfermions LeonardoCosmai 1. Introduction Many fundamental questions are related to the large-scale behavior of Quantum ChromoDy- namics(QCD).Remarkably,quarksandgluonsappeartobeconfinedinordinarymatter,duetothe mechanism of color confinement which is not yet fully understood. A detailed understanding of color confinement is one of the central goals of nonperturbative studies of QCD. Lattice formula- tion of QCD allows us to investigate the color confinement phenomenon within a nonperturbative framework. Itisknownsincelongthat,inlatticenumericalsimulations,tubelikestructuresemerge byanalyzingthechromoelectricfieldsbetweenstaticquarks[1–9]. Suchtubelikestructuresnatu- rallyleadtoalinearpotentialbetweenstaticcolorchargesand,consequently,toadirectnumerical evidenceofcolorconfinement. To explore on the lattice the field configurations produced by a static quark-antiquark pair, the followingconnectedcorrelationfunction[1,10]wasused: (cid:10)tr(cid:0)WLU L†(cid:1)(cid:11) 1 (cid:104)tr(U )tr(W)(cid:105) ρconn= P − P , (1.1) W (cid:104)tr(W)(cid:105) N (cid:104)tr(W)(cid:105) where U =U (x) is the plaquette in the (µ,ν) plane, connected to the Wilson loop W by a P µν Schwinger line L, and N is the number of colors (see Fig. 1). The quark-antiquark field strength tensorisgivenby[1,10]: (cid:115) 1 F (x)= ρconn(x), (1.2) µν g2 W wheregisthegaugecoupling. Inpreviousstudies[4,6–8,11,12]colorfluxtubesmadeupofchro- moelectricfielddirectedalongthelinejoiningastaticquark-antiquarkpairhavebeeninvestigated, inthecasesofSU(2)andSU(3)puregaugetheoriesatzerotemperature. InthispaperwestudytheprofileofcolorfluxtubesinpureSU(3)gaugetheoryandinQCDwith (2+1)flavorsandpresentsomenewpreliminaryresultswithsourcesatdistancesupto1.14fm. Thedualsuperconductormodel[13,14]oftheQCDvacuumis,atleast,averyusefulphenomeno- logical frame to interpret the vacuum dynamics and the formation of color flux tubes in the QCD vacuum. In Refs. [7,8] it has been suggested that lattice data for chromoelectric flux tubes can beanalyzedbyexploitingtheresultspresentedinRef.[15],where,fromtheassumptionofasim- ple variational model for the magnitude of the normalized order parameter of an isolated vortex, UP W L Figure1: TheconnectedcorrelatorgiveninEq.(1.1)betweentheplaquetteU andtheWilsonloop(sub- P tractioninρconnnotexplicitlydrawn). W 1 FluxtubesinQCDwith(2+1)HISQfermions LeonardoCosmai 0.5 0.5 SU(3) pure gauge β=6.050 QCD (2+1) flavors β=6.743 d=0.76 fm β=6.195 d=0.76 fm β=6.885 0.4 0.4 ] ] 2 2 V 0.3 V 0.3 e e G G [ [ ) ) (xt0.2 (xt0.2 E E 0.1 0.1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x [fm] x [fm] t t Figure 2: (left) SU(3) pure gauge: the chromoelectric field E(x) in physical units versus the transverse l t distance x measured for two different values of the gauge coupling for a distance d =0.76fm between t sources. FulllinesarethefitsusingEq.(1.4). (right)QCD(2+1)flavors: asforleftfigure. an analytic expression is derived for magnetic field and supercurrent density, that solves the Am- pere’s law and the Ginzburg-Landau equations. As a consequence, the transverse distribution of thechromoelectricfluxtubecanbedescribed,accordingto[7,8,12],by φ 1 K (R/λ) (cid:113) E (x )= 0 , R= x2+ξ2 (1.3) l t 2π λξ K (ξ /λ) t v v 1 v whereξ isavariationalcore-radiusparameter. Equation(1.3)canberewrittenas v φ µ2K [(µ2x2+α2)1/2] 1 1 λ E (x )= 0 t , µ = , = . (1.4) l t 2π α K [α] λ α ξ 1 v ByfittingEq.(1.4)toflux-tubedata,onecangetboththepenetrationlengthλ andtheratioofthe penetrationlengthtothevariationalcore-radiusparameter,λ/ξ . Moreover,theGinzburg-Landau v κ parametercanbeobtainedby √ κ = λ = 2(cid:2)1−K2(α)/K2(α)(cid:3)1/2. (1.5) ξ α 0 1 Finally,thecoherencelengthξ isdeterminedbycombiningEqs.(1.4)and(1.5). 2. Latticesetupandnumericalresults BothforthecasesofpuregaugeSU(3)andQCDwith(2+1)flavorsweperformedsimulations on a 324 lattice. We have made use of the publicly available MILC code [16], which has been suitablymodifiedbyusinordertointroducetherelevantobservables. 2 FluxtubesinQCDwith(2+1)HISQfermions LeonardoCosmai Table1: SU(3)puregauge. TheresultsofthefittothechromoelectricfieldEq.(1.4)atseveraldistancesd betweenthesources,togetherwiththesquarerootwidthofthefluxtubeEq.(2.3)andthesquarerootofthe energyinthefluxtubeperunitlenghtnormalizedtothefluxφ,Eq.(2.4). √ √ β d [fm] φ λ [fm] κ =λ/ξ ξ [fm] w2 [fm] ε/φ [GeV] 6.050 0.76 5.143(39) 0.164(5) 0.348(208) 0.472(283) 0.458(17) 0.133(5) 6.195 0.76 5.485(56) 0.173(7) 0.369(229) 0.469(293) 0.476(24) 0.128(7) 6.050 0.95 5.932(114) 0.169(16) 0.229(103) 0.738(339) 0.517(59) 0.116(14) 6.050 1.14 6.254(617) 0.166(95) 0.174(65) 0.953(651) 0.542(386) 0.109(82) 2.1 SU(3)puregauge We measure on the lattice the chromoelectric field generated by a quark-antiquark pair at distancesupto1.14fm. Thescaleisfixedusingtheparameterization[17]: √ (cid:0)a σ(cid:1)(g) = f (g2)(cid:8)1+0.2731aˆ2(g) (2.1) SU(3) − 0.01545aˆ4(g)+0.01975aˆ6(g)}/0.01364, f (g2) 6 SU(3) aˆ(g)= , β = , 5.6≤β ≤6.5, f (g2(β =6)) g2 SU(3) with (cid:18) (cid:19) f (g2)=(cid:0)b g2(cid:1)−b1/2b20 exp − 1 , b = 11 , b = 102 . (2.2) SU(3) 0 2b g2 0 (4π)2 1 (4π)4 0 √ Inthefollowing,weassumedforthestringtensionthestandardvalueof σ =420MeV. We measured the connected correlator given in Eq. (1.1) at the middle of the line connecting the staticcolorsources,forvariousvaluesofthedistancebetweenthesourcesandforintegertransverse distances. Inordertoreducetheultravioletnoise, weappliedtotheoperatorinEq.(1.1)onestep of HYP smearing [18] to temporal links, with smearing parameters (α ,α ,α )=(1.0,0.5,0.5), 1 2 3 andN stepsofAPEsmearing[19]tospatiallinks,withsmearingparameterα =0.40. Here APE APE α istheratiobetweentheweightofonestapleandtheweightoftheoriginallink. APE WefittedourdataforthetransverseshapeofthelongitudinalchromoelectricfieldtoEq.(1.4). Remarkably, wefoundthatEq.(1.4)isabletoreproducethetransverseprofileofthelongitudinal chromoelectricfield. We checked that our lattice results are consistent with continuum scaling. To do this we measured the longitudinal chromoelectric field generated by sources at distance 8a and 10a ((a isthelatticespacing)fortwovaluesofthegaugecouplingsβ =6.050andβ =6.195. According tothescalegiveninEq.(2.1)thisamountstoadistanceof0.76fminphysicalunits. Theresultin Fig.2seemstodisplayanalmostperfectscaling. Havingselectedthegaugecouplingregionwhere continuum scaling holds, we measured the the longitudinal chromoelectric field at distances 10a and 12a at β =6.050 which corresponds respectively to distances 0.95fm and 1.14fm in physical units. In Fig. 3 we display the results. Now, using Eq. (1.4) and the values of the parameters obtainedbyfittingEq.(1.4)tothenumericalvalueforthelongitudinalchromoelectricfield,weare 3 FluxtubesinQCDwith(2+1)HISQfermions LeonardoCosmai 0.5 0.5 SU(3) pure gauge β=6.050 SU(3) pure gauge β=6.050 d=10a=0.95 fm d=12a=1.14 fm 0.4 0.4 ] ] 2 2 V 0.3 V 0.3 e e G G [ [ ) ) (xt0.2 (xt0.2 E E 0.1 0.1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x [fm] x [fm] t t Figure3: SU(3)puregauge: thechromoelectricfieldE(x)inphysicalunitsversusthetransversedistance l t x measuredfordistanced=0.95fm(left)anddistanced=1.14fm(right)betweensources. Fulllinesare t thefitsusingEq.(1.4). abletoestimatethemeansquarerootwidthofthefluxtube: (cid:115) (cid:115) √ (cid:82) d2x x2E (x ) 2α K (α) w2= t t l t = 2 (2.3) (cid:82) d2x E (x ) µ2 K (α) t l t 1 andthesquarerootoftheenergyinthefluxtubeperunitlength,normalizedtothefluxφ: √ε = 1(cid:114)(cid:90) d2x El(xt)2 =(cid:118)(cid:117)(cid:117)(cid:116)µ2 (cid:32)1−(cid:18)K0(α)(cid:19)2(cid:33) (2.4) t φ φ 2 8π K (α) 1 TheresultsaregiveninTable1. Wecanarguethatthepenetrationlengthλ isalmoststablewithin errors at varying the distance between the sources. While there is a hint of slow increasing for ξ √ and w2. 2.2 QCD(2+1)flavors In this section we present results obtained for QCD with (2+1) flavors. Highly improved staggered quark action with tree level improved Symanzik gauge action (HISQ/tree) has been adopted (see ref.()). We work on the line of constant physics determined by fixing the strange quarkmasstoitsphysicalvaluem ateachvalueofthegaugecoupling. Thelight-quarkmasshas s beenfixedatm =m /20. ThiscorrespondtoapionmassM =160MeV. Thelatticespacinghas l s π been determined using results of Ref. [20]. As in the case of pure gauge SU(3) theory in order to measurethecorrelatorEq.(1.1)weperformoneHYPsmearingontemporallinksandseveralAPE smearings on spatial links. To check the continuum scaling we considered two different values of thegaugecouplingsβ =6.743andβ =6.885andmeasuredthechromoelectricfieldproducedby sources at distances 7a and 8a respectively. This amounts to have a distance of 0.76fm between sources. The result displayed in Fig. 2 indicates a almost perfect scaling (see also Table 2 for the 4 FluxtubesinQCDwith(2+1)HISQfermions LeonardoCosmai 0.5 1 QCD (2+1) flavors 0.8 QCD (2+1) flavors 0.4 d=10a=0.95 fm d=12a=1.14 fm 0.6 ] ] 2 2 V 0.3 V 0.4 e e G G ) [ ) [ 0.2 (xt0.2 (xt E E 0 0.1 -0.2 -0.4 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x [fm] x [fm] t t Figure4:QCD(2+1)flavors:thechromoelectricfieldE(x)inphysicalunitsversusthetransversedistance l t x measuredfordistanced=0.95fm(left)anddistanced=1.14fm(right)betweensources. Fulllinesare t thefitsusingEq.(1.4). parameters obtained in fitting the data to Eq. (1.4). Then we measure the field produced for two other distances between the sources. Namely at gauge coupling β =6.885 we consider the dis- tances10aand12acorrespondingto0.95fmand1.14fm. TheresultsaredisplayedinFig.4. At variancewithrespecttothepureSU(3)gauge(seeFig.3)themeasurementsforthechromoelectric field at distance d =1.14fm versus the the transverse distance seems to fluctuate around zero, al- thoughwithlargeerrors. Thiscircumstancecouldsuggestthat,inpresenceofdynamicalfermions andforasufficientlylargedistancebetweensources,thefluxtubestructuredisappears. Table2: QCD(2+1)flavors. TheresultsofthefittothechromoelectricfieldEq.(1.4)atseveraldistancesd betweenthesources,togetherwiththesquarerootwidthofthefluxtubeEq.(2.3)andthesquarerootofthe energyinthefluxtubeperunitlenghtnormalizedtothefluxφ,Eq.(2.4). √ √ β ∆[fm] φ λ [fm] κ =λ/ξ ξ [fm] w2 [fm] ε/φ [GeV] 6.743 0.76 4.366(48) 0.139(8) 0.264(131) 0.526(263) 0.411(29) 0.146(11) 6.885 0.76 4.251(67) 0.147(10) 0.342(203) 0.429(256) 0.411(33) 0.148(13) Acknowledgements This work was based in part on the MILC Collaboration’s public lattice gauge theory code (http://physics.utah.edu/~detar/milc.html) and has been partially supported by INFN SUMA project. Simulations have been performed using computing facilities at CINECA (INF16_npqcdprojectunderCINECA-INFNagreement). 5 FluxtubesinQCDwith(2+1)HISQfermions LeonardoCosmai References [1] A.DiGiacomo,M.Maggiore,andS.Olejnik,ConfinementandChromoelectricFluxTubesinLattice QCD,Nucl.Phys.B347(1990)441–460. [2] P.CeaandL.Cosmai,Latticeinvestigationofdualsuperconductormechanismofconfinement,Nucl. Phys.Proc.Suppl.30(1993)572–575. [3] Y.Matsubara,S.Ejiri,andT.Suzuki,The(dual)MeissnereffectinSU(2)andSU(3)QCD,Nucl. Phys.Proc.Suppl.34(1994)176–178,[hep-lat/9311061]. [4] P.CeaandL.Cosmai,DualsuperconductivityintheSU(2)puregaugevacuum: ALatticestudy, Phys.Rev.D52(1995)5152–5164,[hep-lat/9504008]. [5] G.S.Bali,K.Schilling,andC.Schlichter,ObservinglongcolorfluxtubesinSU(2)latticegauge theory,Phys.Rev.D51(1995)5165–5198,[hep-lat/9409005]. [6] M.S.Cardaci,P.Cea,L.Cosmai,R.Falcone,andA.Papa,ChromoelectricfluxtubesinQCD, Phys.Rev.D83(2011)014502,[arXiv:1011.5803]. [7] P.Cea,L.Cosmai,andA.Papa,ChromoelectricfluxtubesandcoherencelengthinQCD,Phys.Rev. D86(2012)054501,[arXiv:1208.1362]. [8] P.Cea,L.Cosmai,F.Cuteri,andA.Papa,FluxtubesintheSU(3)vacuum: Londonpenetrationdepth andcoherencelength,Phys.Rev.D89(2014),no.9094505,[arXiv:1404.1172]. [9] N.Cardoso,M.Cardoso,andP.Bicudo,InsidetheSU(3)quark-antiquarkQCDfluxtube: screening versusquantumwidening,Phys.Rev.D88(2013)054504,[arXiv:1302.3633]. [10] D.S.KuzmenkoandY.A.Simonov,Fielddistributionsinheavymesonsandbaryons,Phys.Lett. B494(2000)81–88,[hep-ph/0006192]. [11] P.CeaandL.Cosmai,DualMeissnereffectandstringtensioninSU(2)latticegaugetheory,Phys. Lett.B349(1995)343–347,[hep-lat/9404017]. [12] P.Cea,L.Cosmai,F.Cuteri,andA.Papa,Fluxtubesatfinitetemperature,JHEP06(2016)033, [arXiv:1511.01783]. [13] G.’tHooft,Theconfinementphenomenoninquantumfieldtheory,inHighEnergyPhysics,EPS InternationalConference,Palermo,1975(A.Zichichi,ed.),1975. [14] S.Mandelstam,VorticesandquarkconfinementinnonAbeliangaugetheories,Phys.Rept.23(1976) 245. [15] J.R.Clem,Simplemodelforthevortexcoreinatypeiisuperconductor,JournalofLowTemperature Physics18(1975)427–434.10.1007/BF00116134. [16] http://physics.utah.edu/~detar/milc.html. [17] R.G.Edwards,U.M.Heller,andT.R.Klassen,AccuratescaledeterminationsfortheWilsongauge action,Nucl.Phys.B517(1998)377–392,[hep-lat/9711003]. [18] A.HasenfratzandF.Knechtli,Flavorsymmetryandthestaticpotentialwithhypercubicblocking, Phys.Rev.D64(2001)034504,[hep-lat/0103029]. [19] M.Falcioni,M.Paciello,G.Parisi,andB.Taglienti,Againonsu(3)glueballmass,NuclearPhysicsB 251(1985),no.0624–632. [20] A.Bazavovetal.,ThechiralanddeconfinementaspectsoftheQCDtransition,Phys.Rev.D85(2012) 054503,[arXiv:1111.1710]. 6