ebook img

Flux tubes at Finite Temperature PDF

1.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flux tubes at Finite Temperature

∗ Flux tubes at Finite Temperature Nuno Cardoso, Marco Cardoso and Pedro Bicudo CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de 7 Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal 1 0 2 n Inthiswork, weshowthefluxtubesofthequark-antiquarkandquark- a quark at finite temperature for SU(3) Lattice QCD. The chromomagnetic J and chromoelectric fields are calculated above and below the phase transi- 6 tion. ] t a PACS numbers: 11.15.Ha; 12.38.Gc l - p e 1. Introduction h [ The study of the chromo fields distributions inside the flux tubes formed QQ and QQ¯ are presented in this study. How the flux tube evolves when 1 v the distance between quarks or the temperature increase beyond respective 6 critical values are addressed in this paper. In section 2, we describe the lat- 9 tice formulation. We briefly review the Polyakov loop for these systems and 6 show how to compute the color fields as well as the Lagrangian distribution. 1 0 Insection3, thenumericalresultsareshown. Finally, weconcludeinsection . 4. 1 0 7 2. Computation of the chromo-fields in the flux tube 1 : v The central observables that govern the event in the flux tube can be Xi extracted from the correlation of a plaquette, (cid:3)µν, with the Polyakov loops, L, r a β (cid:20)(cid:104)O(cid:3) (x)(cid:105) (cid:21) f (r,x) = µν −(cid:104)(cid:3) (x)(cid:105) (1) µν a4 (cid:104)O(cid:105) µν where O = L(0)L†(r) for the QQ¯ system or O = L(0)L(r) for the QQ system, x denotes the distance of the plaquette from the line connecting ∗ Presented by N. Cardoso at the International Meeting "Excited QCD", Costa da Caparica, Portugal, 6 - 12 March, 2012 (1) 2 proceeding printed on January 9, 2017 quark sources, r is the quark separation, L(r) = 1 TrΠNt U (r,t) where 3 t=1 4 N is the number of time slices of the lattice and using the periodicity in t the time direction for the plaquette, (cid:3) (x) = 1 (cid:80)Nt (cid:3) (x,t), allows µν Nt t=1 µν averaging over the time direction. To reduce the fluctuations of the O(cid:3) (x), we measure the following µν quantity, [1], β (cid:20)(cid:104)O(cid:3) (x)(cid:105)−(cid:104)O(cid:3) (x )(cid:105)(cid:21) µν µν R f (r,x) = (2) µν a4 (cid:104)O(cid:105) where x is the reference point placed far from the quark sources. R Therefore, using the plaquette orientation (µ,ν) = (2,3),(1,3),(1,2), (1,4),(2,4),(3,4), we can relate the six components in Eq. (2) to the com- ponents of the chromoelectric and chromomagnetic fields, f → 1 (cid:0)−(cid:10)B2(cid:11),−(cid:10)B2(cid:11),−(cid:10)B2(cid:11),(cid:10)E2(cid:11),(cid:10)E2(cid:11),(cid:10)E2(cid:11)(cid:1) (3) µν 2 x y z x y z andalsocalculatethetotalaction(Lagrangian)density,(cid:104)L(cid:105) = 1 (cid:0)(cid:10)E2(cid:11)−(cid:10)B2(cid:11)(cid:1) 2 In order to improve the signal over noise ratio, we use the multihit tech- nique, [2, 3], replacing each temporal link by it’s thermal average, and the extended multihit technique, [4], which consists in replacing each temporal link by it’s thermal average with the first N neighbors fixed. Instead of taking the thermal average of a temporal link with the first neighbors, we fix the higher order neighbors, and apply the heat-bath algorithm to all the links inside, averaging the central link, U → U¯ = (cid:82) [DU4]ΩU4eβ(cid:80)µ,sTr[Uµ(s)F†(s)] (4) 4 4 (cid:82) [DU4]Ω eβ(cid:80)µ,sTr[Uµ(s)F†(s)] By using N = 2 we are able to greatly improve the signal, when compared with the error reduction achieved with the simple multihit. Of course, this technique is more computer intensive than simple multihit, while being sim- pler to implement than multilevel. The only restriction is R > 2N for this technique to be valid. 3. Results In this section, we present the results for different β values suing a fixed latticevolumeof483×8,Table1. AllthecomputationsweredoneinNVIDIA GPUs using CUDA. The QQ and QQ¯ are located at (0,−R/2,0) and (0,R/2,0) for R = 4,6,8,10 and 12 lattice spacing units. In Figs. 2 and 4, we show the results proceeding printed on January 9, 2017 3 √ β T/T a σ # config. c 5.96 0.845 0.235023 5990 6.055 0.988 0.200931 5990/4775* 6.1237 1.100 0.180504 3669 6.2 1.233 0.161013 1868 6.338 1.501 0.132287 3688 6.5 1.868 0.106364 1868 Table 1: Lattice simulations for a 483 ×8 volume. The lattice spacing was computedusingtheparametrizationfrom[5]inunitsofthestringtensionat zero temperature. The ∗ means without configurations in the wrong phase transition. for the QQ¯ system. As expected the strength of the fields decrease with the temperature. Also, in the confined phase the width in the middle of the flux tube increases with the distance between the sources, while above the phase transition the width decreases with the distance. Just below the phase transition, we need to make sure that we don’t have contaminated configurations as already mentioned in [6]. By plotting the histogram of Polyakov loop history for β = 6.055, Fig. 1, we were able to identify a second peak which then we were able to remove all the config- urations that lie on the second peak. Therefore, in Table 1 the value with asteriskcorrespondstotheconfigurationsafterremovingthesecontaminated configurations. In Figs. 3a and 3b, we show the results of this effect for the QQ system below the phase transition. 4000 4000 3500 3500 3000 3000 Frequency 122505000000 Frequency 122505000000 1000 1000 500 500 0 0 -0.015 -0.003 0.009 0.021 0.033 0.045 0.000 0.009 0.018 0.027 0.036 0.045 Re(L) |L| Figure1: Histogram of the Polyakov loop history for β = 6.055. 4. Conclusions As the distance increase between the sources, the field strength at the flux tube decreases as already seen in studies at zero temperature. Below the phase transition, the fields strength decreases as the temperature in- creases. However, above the phase transition the fields rapidly decrease to 4 proceeding printed on January 9, 2017 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 35 − L 20 − L 30 25 15 2/σ 1250 2/σ 10 O10 O5 5 0 0 5 5 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 y σ y σ y σ y σ y σ y σ R = 4 R =p 6 R = 8 p R =( 1a0) βp=5R. =9 612,RT = 4=0.845RT =pc 6. R = 8 p R = 10 p R = 12 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 40 − L 20 − L 35 30 15 25 2σ 20 2σ 10 /O15 /O5 10 5 0 0 5 5 2 1 0 1 22 1 0 1 22 1 0 1 2 2 1 0 1 22 1 0 1 22 1 0 1 2 y σ y σ y σ y σ y σ y σ R = 4 R =p 6(b) β =R =6 8.0p55, TR == 100.988pTcR, =w 1i2tRh = c4ontamRin =pa 6ted conRfi =g 8urpationRs =. 10 p R = 12 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 50 − L 25 − L 40 20 30 15 2/σ 20 2/σ 10 O O 10 5 0 0 10 5 2 1 0 1 22 1 0 1 22 1 0 1 2 2 1 0 1 22 1 0 1 22 1 0 1 2 y σ y σ y σ y σ y σ y σ R = 4 R =( p6c) β =R6 =.0 855p, T =R =0 1.9088Tpc,Rw =it 1h2Ro u= t4contamR =ipn 6ated coR n=fi 8gupratioRn =s 1.0 p R = 12 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 70 − L 20 − L 60 50 15 2/σO234000 2/σO105 10 0 0 10 5 1.51.00.50.00.51.01.51.51.00.50.00.51.01.51.51.00.50.00.51.01.5 1.5 1.0 0.50.0 0.5 1.0 1.51.5 1.0 0.50.0 0.5 1.0 1.51.5 1.0 0.50.0 0.5 1.0 1.5 R = 4 R =y 6σ R = 8 y σ R =< (1Ed0)2>βy/=2σR6 =.2 1,2RT == 4<1B.223>3R/T 2=cy .6σ R = 8/2y σ R = 10 y σR = 12 p 6p0 p − p L p p <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 300 − 50 L 60 − L 250 40 50 200 40 2/σO110500 2/σO 2300 2/σO2300 50 10 10 0 0 0 50 10 1.0 0.5 0.0 0.5 1.01.0 0.5100.0 0.5 1.01.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.01.0 0.5 0.0 0.5 1.01.0 0.5 0.0 0.5 1.0 0 5 0 5 0 0 5 0 5 0 0 5 0 5 0 R = 4 R =y 6σ R = 8 y σ1. R =0. 1(0e)0.βy=0.σR6 =.15. 1,12.TR == 04. 10..8680RT. =cy .61.σ1. 0.R = 08. y0.σ R1. = 10 y σR = 12 p p p p p p R = 4 R =y 6 σ R = 8 y σ R = 10 y σR = 12 p p p Figure2: The results for the QQ¯ system. The results in the left column correspond to the fields along the sources (plane XY) and the right column to the results in the middle of the flux tube (plane XZ). R is the distance between the sources in lattice units. zero as the quarks are pulled apart. The width of the flux tube below the proceeding printed on January 9, 2017 5 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 40 − L 20 − L 30 15 10 2σ 20 2σ 5 /O10 /O 0 5 0 10 10 15 2 1 0 1 22 1 0 1 22 1 0 1 2 2 1 0 1 22 1 0 1 22 1 0 1 2 y σ y σ y σ y σ y σ y σ R = 4 R = p6(a) β =R =6 8.05p5, TR == 100.988pTcR, =w 1i2tRh = c4ontamRin =a p6ted conRfi =g 8uraptionRs =. 10 p R = 12 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 600 − L 1200 − L 400 1000 200 800 2/σO 4200000 2/σO2460000000 600 200 800 400 1000 600 2 1 0 1 22 1 0 1 22 1 0 1 2 2 1 0 1 22 1 0 1 22 1 0 1 2 y σ y σ y σ y σ y σ y σ R = 4 R =( 6bp) β =R6 =.0 855,pT =R =0 1.0988Tpc,Rw =i t1h2Ro =u t4contamR =in 6pated coR n=fi 8gupratioR n=s 1.0 p R = 12 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 70 − L 20 − L 60 50 15 2/σO234000 2/σO105 10 0 0 10 5 1.51.00.50.00.51.01.51.51.00.50.00.51.01.51.51.00.50.00.51.01.5 1.5 1.0 0.50.0 0.5 1.0 1.51.5 1.0 0.50.0 0.5 1.0 1.51.5 1.0 0.50.0 0.5 1.0 1.5 R = 4 R =y 6σ R = 8 y σ R =< 1(E0c)2>βy/=2σR6 =.2 1,2TR == 4<1B.223>3R/T 2=cy. 6σ R = 8/2y σ R = 10 y σR = 12 p 6p0 p − p L p p <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 300 − 50 L 60 − L 250 40 50 200 40 2/σO110500 2/σO 2300 2/σO2300 50 10 10 0 0 0 50 10 1.0 0.5 0.0 0.5 1.01.0 0.5100.0 0.5 1.01.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.01.0 0.5 0.0 0.5 1.01.0 0.5 0.0 0.5 1.0 0 5 0 5 0 0 5 0 5 0 0 5 0 5 0 R = 4 R =y 6σ R = 8 y σ1. R =0. (10d0).βy=0.σR6 =.15. 1,12.RT = =04. 10..8680R.T =cy .61.σ1. 0.R = 08. y0.σ R1. = 10 y σR = 12 p p p p p p R = 4 R =y 6 σ R = 8 y σ R = 10 y σR = 12 p p p Figure3: The results for the QQ system. The results in the left column correspond to the fields along the sources (plane XY) and the right column to the results in the middle of the flux tube (plane XZ). R is the distance between the sources in lattice units. phase transition increases with the separation between the quark-antiquark, however above the phase transition the width seems to decrease. Acknowledgments NunoCardosoandMarcoCardosoaresupportedbyFCTunderthecon- tracts SFRH/BPD/109443/2015 and SFRH/BPD/73140/2010 respectively. WealsoacknowledgetheuseofCPUandGPUserversofPtQCD,supported 6 proceeding printed on January 9, 2017 <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 25 − L 7 − L 20 6 5 2/σO11055 2/σO234 1 0 0 5 1 0.0 0.5 1.0 1.5 20..00 0.5 1.0 1.5 20..00 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 20..00 0.5 1.0 1.5 20..00 0.5 1.0 1.5 2.0 r σ r σ r σ r σ r σ r σ T=0.988Tpc R=0.804 σ p T=1.867Tc Rp = 0.851 σ T=0.988Tpc R=1.206 σ p T=1.501Tc Rp = 1.323 σ T=1.501Tc R = 0.794p σ p T=1.233Tc R = 1.288p σ T=1.867Tc R = 1.276pσ p p p Figure4: Results for the fields of the QQ¯ system in the middle of the flux tube in the plane XZ. <E2>/2 <B2>/2 /2 <E2>/2 <B2>/2 /2 3.5 − L 3.5 − L 3.0 3.0 2.5 2.5 2/σO112...050 2/σO112...050 0.5 0.5 0.0 0.0 0.5 0.5 024680246802468024680246802468 024680246802468024680246802468 0.0.0.0.0.1.1.1.1.10..0.0.0.0.1.1.1.1.10..0.0.0.0.1.1.1.1.1. 0.0.0.0.0.1.1.1.1.10..0.0.0.0.1.1.1.1.10..0.0.0.0.1.1.1.1.1. r σ r σ r σ r σ r σ r σ T=1.1Tpc R=1.083 σ p T=1.501Tc Rp = 1.058 σ T=1.1Tpc R=1.083 σ p T=1.501Tc Rp = 1.058 σ (ap) QQ¯. p (bp) QQ. p Figure5: Results for the fields in the middle of the flux tube in the plane XZ. by NVIDIA, CFTP and FCT grant UID/FIS/00777/2013. References [1] Y. Peng, R. W. Haymaker, SU(2) flux distributions on finite lattices, Phys. Rev. D 47 (1993) 5104–5112. [2] R. Brower, P. Rossi, C.-I. Tan, The External Field Problem for QCD, Nucl. Phys. B190 (1981) 699. [3] G. Parisi, R. Petronzio, F. Rapuano, A Measurement of the String Tension Near the Continuum Limit, Phys. Lett. B128 (1983) 418. [4] N. Cardoso, M. Cardoso, P. Bicudo, Inside the SU(3) quark-antiquark QCD flux tube: screening versus quantum widening, Phys. Rev. D88 (2013) 054504. [5] R. G. Edwards, U. M. Heller, T. R. Klassen, Accurate scale determinations for the Wilson gauge action, Nucl. Phys. B517 (1998) 377–392. [6] N. Cardoso, P. Bicudo, Lattice QCD computation of the SU(3) String Tension critical curve, Phys. Rev. D85 (2012) 077501.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.