Flux-StabilizedMajoranaZeroModesinCoupledOne-DimensionalFermiWires Chun Chen,1,∗ Wei Yan,2,3 C. S. Ting,4 Yan Chen,2,3 and F. J. Burnell1 1SchoolofPhysicsandAstronomy, UniversityofMinnesota, Minneapolis, Minnesota55455, USA 2DepartmentofPhysicsandStateKeyLaboratoryofSurfacePhysics,FudanUniversity,Shanghai200433,China 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 4TexasCenterforSuperconductivityandDepartmentofPhysics,UniversityofHouston,Houston,Texas77204,USA (Dated:January10,2017) Onepromisingavenuetostudyone-dimensional(1D)topologicalphasesistorealizetheminsyntheticma- terials such as cold atomic gases. Intriguingly, it is possible to realize Majorana boundary modes in a 1D number-conservingsystemconsistingoftwofermionicchainscoupledonlybypair-hoppingprocesses[1]. It iscommonlybelievedthatsignificantinterchainsingle-particletunnelingnecessarilydestroystheseMajorana 7 modes,asitspoilstheZ2fermionparitysymmetrythatprotectsthem. InthisLetter,wepresentanewmecha- 1 nismtoovercomethisobstacle,bypiercinga(synthetic)magneticπ-fluxthrougheachplaquetteoftheFermi 0 ladder. Using bosonization, we show that in this case there exists an exact leg-interchange symmetry that is 2 robusttointerchainhopping,andactsasfermionparityatlongwavelengths. Weutilizedensitymatrixrenor- malizationgroupandexactdiagonalizationtoverifythattheresultingmodelexhibitsMajoranaboundarymodes n uptolargesingle-particletunnelings,comparabletotheintrachainhoppingstrength. Ourworkhighlightsthe a unusualimpactsofdifferenttopologicallytrivialbandstructuresontheseinteraction-driventopologicalphases, J andidentifiesadistinctroutetostabilizingMajoranaboundarymodesin1Dfermionicladders. 7 PACSnumbers:67.85.−d,71.10.Pm,03.67.Lx,74.90.+n ] l e - The classification of topological phases in one dimension obstacle: We begin with a different band structure, in which r t [2–4] revealed an intriguing array of possible new states of each plaquette of the ladder has a flux of π. We show that s . matter, with a variety of types of protected gapless bound- with pair hopping this model also has an interacting topo- t a ary modes. Of these, one class that has generated consider- logicalregimehostingMajoranaboundarymodes—whichin m ableexcitementrecentlyistheone-dimensional(1D)topolog- this case are protected by a symmetry preserved even in the - ical superconductors first described by Ref. [5]. These have presence of finite t . We bolster our theory with numerical d ⊥ protectedboundaryMajoranazeromodes,whichharbornon- evidence of Majorana boundary modes over a wide range of n o Abelian statistics [6–8] and hence are promising candidates t⊥. Ourfindingsthusfurnishanappealingmechanismtoen- c fortopologicalquantumcomputing[9,10]. gineer topological boundary modes in a particle-conserving [ In practise, to obtain long-range superconducting order in andstronglyinteractingsystemwithouttheneedtofine-tune 1 1Dsystemsrequiresinducingsuperconductivityviacoupling single-particletunneling. v to a 3D bulk superconductor [11–21]; experimental progress Fermionicfluxladdermodel.—Motivatedbytheseconsid- 4 in this direction has been made in several distinct solid-state erations,westudyaninteractingtwo-legladdermodelofspin- 9 systems [22–26]. Interestingly, however, it is also possible less fermions in a perpendicular magnetic field described by 7 1 tohosttopologicalboundarymodesintruly1Dplatforms,in thefollowingnumber-conservingHamiltonian, 0 spiteofthefactthatthesesystemsdonotsupportlong-range H =H +H , (1) . superconductingorder,andareinfactgapless[1,27–31].This K W 1 70 oppheansessuipntshyenpthoestsiicbimlitayteorfiasltsusduycinhga1sDcofledrmatioomniicctgoapsoelsog[3ic2a–l HK =−L(cid:88)−2[(t(cid:107)eiφ2c†n,0cn+1,0+t(cid:107)e−iφ2c†n,1cn+1,1)+H.c.] 1 39],offeringanattractivearchitecturewithincreasedtunabil- n=0 v: ity. L(cid:88)−1 − (t c† c +H.c.), (2) i One concrete model in this category was proposed by ⊥ n,0 n,1 X n=0 Ref. [1], who showed numerically that even starting from a r L−2 a latticeHamiltonianwithatopologicallytrivialbandstructure, H =+(cid:88)(Wc† c† c c +H.c.), (3) aregimebearingthehallmarksofMajoranaboundarymodes W n,0 n+1,0 n,1 n+1,1 n=0 canbeaccessedinanatomictwo-legladderbyintroducingan interlegpair-hoppinginteraction. Theseboundarymodesare wherec(†) isthefermionicannihilation(creation)operatorat n,(cid:96) protectedbytheconservedfermionparityofoneofthewires, rung n on the leg (cid:96)=0,1. The intraleg and interleg single- and are therefore robust provided that the single-particle in- particle tunneling strengths are t and t , respectively, and (cid:107) ⊥ terleg tunneling (t⊥), which breaks this symmetry explicitly, W (whichwetaketobenegativethroughoutthiswork)isthe is sufficiently small. A number of proposals [1, 29–31] for pair-hoppingstrength. Twoessentialingredientsoftheabove suppressing t⊥ such that this regime may be experimentally model are the synthetic Peierls phase φ∈[0,π] per plaque- realizedensued. tte,andtheinterchainpair-hoppinginteractionH . Previous W In this paper we propose a distinct route to overcome this workshavedemonstratedtheexistenceofMajoranaboundary 2 modes in this Hamiltonian at φ=0 and t =0 based on a Bosonizationandrenormalizationgroupanalysis.—Toun- ⊥ preservedfermionnumberparityP(cid:96):=(−1)N(cid:96), whereN(cid:96) is derstandthespecialroleoftheZ2 symmetryLs,webosonize theparticle-numberoperatorofasingleleg(cid:96)[1,29–31].Here the model (1). For φ=π, the kinetic Hamiltonian H has K (cid:113) wewillshowthatwhenφ=π,theseboundarymodespersist bandenergiesE =± t2 +4t2sin2(ka),withbandgap hgr/lwr ⊥ (cid:107) uptot ofordert . Notethatwithoutpairhopping,thebare ⊥ (cid:107) 2t . Hereweconsiderasystematlessthanhalf-filling,with bandH in(2)istopologicallytrivial, sothatthemodel(1) ⊥ K theinteractionscaleW smallrelativetothebandwidth,such requires interactions to realize the topological regime. This thatwecanprojectouttheunoccupiedbandandfocusonlyon isnecessarilythecaseforisolated1Dsystems,wheretheto- theprocessesinsidethelowerbandwhentreatingH . Here W talfermionnumberisconserved—incontrasttomodelsbased the Fermi energy intersects the lower band at four separate one.g.,Kitaevorspin-orbit-coupledwires[40–42],wherethe Fermipoints,asshowninFig.1. Majorana modes may originate from nontrivial Bogoliubov– Linearizing about these four Fermi points results in two deGennesbandstructures,asCooperpairscanbeexchanged right-moving(R)andtwoleft-moving(L)fermionoperators, withabulk3Dsuperconductor. whichwedistinguishusingavalleyindex(IorII).Bosonizing Symmetry analysis.—Though our system is gapless, its theseintheusualway,wehaveψκ,ν∼eiϕκ,ν,withκ=R(L) topologicalboundarymodescanbeunderstoodusingthesym- andν=I(II). Wedefinethenonchiralbosonicfields metry classification of 1D gapped fermionic phases [3]. We therefore begin with a discussion of the underlying symme- 1 1 θ = √ {θ +θ }, θ = √ {θ −θ }, (4) c I II s I II tries. BelowwearguethattheMajoranaboundarymodesare 2 2 protectedbyaunitaryZ leg-interchangesymmetryL which 1 1 2 s φ = √ {φ +φ }, φ = √ {φ −φ }, (5) takes c → (−1)n+1c , c → (−1)n+1c , where n c I II s I II n,0 n,1 n,1 n,0 2 2 indexes the site along the chain. This is a symmetry only for φ = π; we will see that its action is equivalent to that where θν = √1 (ϕR,ν −ϕL,ν), φν = √1 (ϕR,ν +ϕL,ν), 2 2 of an emergent fermion parity operator that we will describe such that ϕ = 1[(φ +κθ ) + ν(φ +κθ )]. Af- κ,ν 2 c c s s presently using bosonization. Additionally, for any flux φ, ter including appropriate Klein factors, the only nontriv- thereisanantiunitarytime-reversalsymmetrythatcombines ial commutators among these nonchiral bosonic fields are complex conjugation with interchanging the two legs of the [θ (x),φ (x(cid:48))]=−2iπΘ(x(cid:48)−x), [θ (x),φ (x(cid:48))]=2iπΘ(x− c c s s ladder,obeyingT2=+1. Inprinciple,thisenableseightdis- x(cid:48)), [θ (x),φ (x(cid:48))]=−2iπ,whereΘ(x)istheHeavisidestep s c tincttypesofboundarymodes[3],thoughnumericallyweob- function. The corresponding density and current operators serve only one of these, with a single Majorana zero mode are: ρ =(1/π)∂ θ , ρ =(1/π)∂ θ , J =(1/π)∂ φ , J = c x c s x s c x c s at each boundary. Finally, there also exists an overall U(1) (1/π)∂ φ . x s fermion number conservation. In our case its chief signifi- Bosonizing the interaction term H produces multiple W canceisthat,unlikethesituationconsideredbyRef.[3],only four-fermionterms,ofwhichonlyslowly-varyingtermscon- atexactlyhalf-fillingisamicroscopic(ratherthanemergent) tribute in the continuum limit. When φ = π, in addition to particle-holesymmetrypossible. Ift =0,themodelhasan the usual momentum-conserving processes, this allows for ⊥ additional exact Z symmetry, corresponding to the fermion intervalley umklapp scattering, since the Fermi points obey 2 parityofasinglelegoftheladder,givenbyP . Itisthissym- k =−k , k =−k , k +k =π/a,suchthat (cid:96) L,I R,II R,I L,II L,II R,II metrythatprotectsthetopologicalboundarymodesobserved 2π byRef.[1]atzeroflux. k +k −k −k = . (6) L,II R,II L,I R,I a Eq. (6) is valid independent of the chemical potential within thelowerband,butitwillnotholdifφ(cid:54)=π. TheresultingbosonizedformofHdecouplesintoagapless chargesectorandagappedspinsector: ) a (kwr H (cid:39)Hc+Hs, (7) El (cid:90) 1 u kL,I kR,I kL,II kR,II Hc = 2π{ucKc(∂xφc(x))2+ Kc (∂xθc(x))2}, (8) x c (cid:90) 1 u H = {u K (∂ φ (x))2+ s (∂ θ (x))2} s 2π s s x s K x s x s 2g (cid:90) 2g (cid:90) + um cos(2φ (x))− bs cos(2θ (x)) ka (2πa)2 s (2πa)2 s x x FIG. 1: Linearization of the lower band (blue solid line) at φ = − 2gmx (cid:90) cos(2θ (x))·cos(2φ (x)), (9) π. Theobtainedfourchiral-fermionbranchescanbeseparatedinto (2πa)2 s s x valley-I (light magenta) and valley-II (light orange) that generalize (cid:82) (cid:82) the original chain degrees of freedom. Specifically, we depict the where ≡ dx and the associated coupling constants are x twotypesofumklappprocessesthatobeyEq.(6). given by g = −aWcos2(k a)(sin4ξ +cos4ξ), g = um π2 R,II 2 2 bs 3 −aWsin2(k a)sin2ξ, and g = −aW(sin4ξ +cos4ξ). which amounts to sending the fermion mass outside the 2π2 R,II mx 2π2 2 2 Herethewavefunctioninthelowerbandatk ,hastheform system to +∞ on both legs of the ladder [44]. This R,II (cosξ, sinξ) in the leg (i.e., 0,1) basis [43]. Note that the fixes θ (x ∈ (−∞,−L)) = ±π +2nˆ(1)π and θ (x ∈ 2 2 s 2 2 θs s gum-termfavorsCooperpairingwhilethecompetinggbs-term (L,∞)) = ±π+2nˆ(2)π. In the gapped bulk of the ladder, favorsavalleydensity-wave-typeorder. Moreover, owingto 2 2 θs φ (x∈(−L,L))=−π+nˆ π,wherenˆ(1,2), nˆ areinteger the density-density interactions, the velocities and Luttinger s 2 2 2 φs θs φs operators. Thetwodomain-wallMajoranaoperatorsarethen: parameters are renormalized. Particularly, for the spin chan- nel γL (cid:39) eiπ(nˆ(θ1s)+nˆφs), γR (cid:39) eiπ(nˆ(θ2s)+nˆφs). These satisfy the (cid:113) Majorana relations γL†/R=γL/R, γL2/R=1, {γL,γR}=0, us= (u+g)2−4g2cos2(2kR,IIa), (10) and define an emergent fermion parity Pv = iγLγR. (cid:115) This acts on the spin fields within the gapped system via u+g+2gcos(2k a) Ks= u+g−2gcos(2kR,IIa), (11) PvφsP−v1=φs−π, PvθsP−v1=θs. In particular, when gum R,II dominates the RG flow, P maps between the system’s two v whereu=12vF≡12dEdklwr(cid:12)(cid:12)k=kR,II>0andg=2(a2Wπ)3sin2ξ. ctrliavsisailclyalognrothuendtwsotactelass;swichalengrgobusnddosmtaitnesa.tes the flow, it acts Asthechargesectorisgapless,wewillconcentrateonthe Strictly speaking the operator P does not correspond to v spin sector, which is responsible for the topological Majo- any microscopic symmetry for |t | > 0. (For t = 0, it ⊥ ⊥ ranaboundarymodes.Todeterminewhichofthesine-Gordon can be interpreted as the fermion parity of one of the lad- termsinH dominates, weusetheone-looprenormalization s der’s two legs.) However, at φ = π its action is equivalent group(RG)flowequations: tothatofthemicroscopicZ symmetryL ,whichactsonthe 2 s dKs(l) = yu2m(l) − yb2s(l)Ks2(l), (12) bosonizedfieldviaLsφs(x)L−s 1=−φs(x)(mod2π). Specif- dl 2 2 ically,sincegum ispositive,bothPv andLs mapbetweenthe dy (l) two classical minima |±π/2(cid:105) of the sine-Gordon potential, udml =(2−2Ks−1(l))yum(l), (13) whereφs(x)|±π/2(cid:105)=(±π/2mod2π)|±π/2(cid:105). Thuswithin theground-statemanifold,theactionofP isequivalenttothat dy (l) v bdsl =(2−2Ks(l))ybs(l), (14) of the exact symmetry of Ls. Indeed, in a finite-size system, due to the proliferation of instanton processes [27, 45], the dy (l) mdxl =(2−2Ks(l)−2Ks−1(l))ymx(l), (15) groundstatesofHs-Garesplitinto|±(cid:105)=√12(|π/2(cid:105)±|−π/2(cid:105)) whoseenergydifferenceisexponentiallysmallinthesystem’s whereyum=g2uumπ, ybs=2gubsπ,andymx=g2muπx arethedimen- size. The lowest two eigenstates therefore obey Pv|±(cid:105) = sionlesscouplingconstants. Theg -channel,involvingboth mx ±|±(cid:105), L |±(cid:105) = ±|±(cid:105), and can be labeled by their eigen- s θ and φ , is power-counting irrelevant for any value of K s s s valuesunderthemicroscopicsymmetryL . s and can be neglected. Accordingly, the gap-opening compe- We note that for flux φ (cid:54)= π, the umklapp scattering tition is between g and g . If we take W to be negative, um bs leading to Eq. (16) is no longer an effective zero (lattice)- thenfor3π/(4a)>k >π/(2a)wehaveK >1andg is R,II s um momentum transfer process, and cos(2φ (x)) is replaced by s theonlyrelevantcoupling.Inthisregimethelong-wavelength cos(2φ (x)−δx), where δ parameterizes the deviation of s effectiveHamiltonianisthereforeexpectedtobe the flux from π. In this case we expect a commensurate- H ∼H =(cid:90) L2 dx(cid:26)u K (∂ φ (x))2+ us (∂ θ (x))2 ibnocuonmdmaryenmsuordaetes.tArasnsdietisocnribwedhiicnhthdeesSturopypslemtheenttaolpMolaotgeirciaall s s-G 2π s s x s K x s −L2 s [43],numericalevidencesuggeststhatthistransitionleadsto g (cid:111) +πuam2 cos(2φs(x)) . (16) apChoasmepianrwinhgicφh=θsπiswliothckφed=. 0.—Asnotedabove, thetopo- Note that for W < 0, g > 0 and the coefficient of the logical state found in Ref. [1] at φ=0, t =0 is protected um ⊥ cos(2φ ) term is positive, contrary to the usual sine-Gordon by the symmetry P corresponding to the conserved fermion s (cid:96) model. As explainedbelow, this signflip, which arisesfrom parity of one of the ladder’s legs. For t = 0, the operator ⊥ theparticularumklappprocessesthatoccurinthebandstruc- P constructedfromtheMajoranaboundarymodesisexactly v ture for φ=π, is crucial to ensuring that the staggered leg- equal to P , and therefore corresponds to an exact symme- (cid:96) interchange symmetry L acts like a fermion parity operator. trythatprotectstheresultingtopologicalboundarymodes. In s Indeed, for W > 0 and 3π/(4a) > k > π/(2a) it is the comparison, at φ=π we have found that P ’s action on the R,II v negative coupling g that is most relevant; this phase shows classicalgroundstatesisidenticaltothatoftheleg-exchange bs no numerical signatures of topological boundary modes, as symmetry L , which is not violated by finite t . Hence it s ⊥ discussedintheSupplementalMaterial[43]. is the particular action of L at this point which gives the s Z symmetry and Majorana operators.—Following topological boundary modes their enhanced stability. This 2 Ref. [21] we can further derive the bosonized Majorana- result highlights the fact that different choices of topologi- boundary-mode operators by specifying the vacuum Hamil- cally trivial band structures can have profound implications tonian density Hvac(x) = −2Mπa∞sin(θs(x))cos(θc(x)), forinteraction-driventopologicalphases. 4 In addition to these symmetry considerations, introducing model (1) at φ = π and t = 0.5t . The numerical out- ⊥ (cid:107) t at φ = 0 has a significantly different impact on the band comesprovidestrongevidencesupportingourtheoreticalpre- ⊥ structureandumklappprocessesthandoingsoatφ=π,mak- dictions. Fig.2(a)demonstratesthatinthelow-populationre- ing the latter state more stable. For φ = t = 0, the two gion(N/L=1/3),whenpairhoppingisstrong(W=−1.7t ), ⊥ (cid:107) chains’bandsareidentical. Thisoverlapfavorstheumklapp- the energy gap between the ground state and the 1st excited scatteringprocessesthatleadtothetopologicalphase. How- state closes exponentially as the ladder’s size L increases. ever,increasingt atφ=0separatesthetwobandsandcre- Thisisincontrastwithapower-lawgapclosingresultingfrom ⊥ ates a Fermi-velocity mismatch, which disfavors these pro- thegaplesschargesector. Asanticipated,thesetwonearlyde- cesses,ultimatelycausingthespingaptocloseatasmallbut generateeigenstatesaredistinguishedbytheireigenvaluesof finitevalueoft [1]. Bycontrast, whenφ=π, thetwoval- L : The ground (1st excited) state has eigenvalue +1 (−1). ⊥ s leyswherethechains’bandscrosstheFermisurfacearemax- Theresultingground-statemanifoldisfurtherseparatedfrom imallyseparatedbyawavevectorπ/a, andremainsymmet- the rest of the spectrum by a gap which only decreases in- ricwithafinitet . InthiscasetheFermi-velocitymismatch versely with L (Fig. 2(b)). Moreover, the topological Majo- ⊥ is absent, and the spin gap persists up to large values of t . rana boundary modes can be characterized via the nonlocal ⊥ Thus the different nontopological band structures play a key correlations[1,30,31]inthesingle-particleGreenfunctions roleinmakingthetopologicalMajoranamodesrobust(frag- G := (cid:104)c† c (cid:105) = (cid:104)c† c (cid:105). These are apparent for a mn m,0 n,0 m,1 n,1 ile) against t at φ=π (φ=0), consistent with the fact that rangeoft valuesinthetopologicalregime(Figs.2(c)–(d)). ⊥ ⊥ t breaksP butpreservesL . The presence of the edge states also gives rise to a two-fold ⊥ (cid:96) s degeneracyintheentanglementspectrum(ES)[2,48]onthe centralbond(Fig.2(f)). TheseDMRGresultshavebeencon- 0.20 1/12 firmedbyEDforsmallsystemsizes. ln(E1 E0) E2 E1 5 0.15 As discussed in the Supplemental Material [43], adding a 1/24 10 0.10 1/32 smallLs-symmetry-breakingperturbationto(1)causesthede- 0.05 1/601/48 generacy in the ES to lift, and the energy gap of E1−E0 15 (a) 1/72 (b) to deviate from the exponentially small splitting observed in 12 24 36 48 60 72 0.00 0.03 0.06 0.09 L 1/L Fig.2(a). Thissupportsourclaimthatthetopologicalbound- a8 00..0150 tL4=80N.51t6|| ||GG01nn|| (c) nt Spectr6 aryTmoofudlelysacrheaprarcotteercitzeedtbhyeLtospaotloφg=icπalarnedgitm⊥e(cid:54)=,w0.ealsoshow me4 evidenceofaphasetransitionoutofthetopologicalregimeat e 0.000 15 30 45 ntangl2 (f) tn⊥o,ncl≈oc2a.l5cto(cid:107)r.rFeliagt.io2n(es)isnhGowsaavraeluaebste⊥n>t. tF⊥u,cr,thfeorr,washischhowthne E mn 00..0150 tL4=81N.01t6|| ||GG01nn|| (d) 0 0.5 1.0 1.5t /t||2.0 2.5 3.0 ibsyliFftiegd.2a(nfd),tthheeldoewgeesntelreavceyliinscthleearElySnaopnpdareegnetnfeorartte⊥a<tt⊥t⊥=,c 3.0t . Our numerics suggest that the transition is toward a 0.00 0.18 (cid:107) 0.20 15 30 45 state with density-wave order at large t⊥: For t⊥ > t⊥,c, t =3.0t|| |G0n| (e) n (t=0.5t||) the fermion-density profile ρn := (cid:104)c†n,0cn,0(cid:105) = (cid:104)c†n,1cn,1(cid:105) in 0.1 L48N16 |G1n| 0.15 n (t=1.0t||) Fig.2(g)evolvesfromauniformdistributiontowardanoscil- n (t=3.0t||) (g) latory pattern. Additionally, for t⊥ ≥3.0t(cid:107), the two lowest 0.00 15 n 30 45 0 15 n 30 45 energy eigenstates split and both have Ls eigenvalues of +1 [43]. Alltheaboveobservationssuggestthatoncet >t , FIG.2: Numericalsignaturesofthetopologicalphase. (a)and(b): ⊥ ⊥,c theMajoranaboundarymodesdisappear. Scaling of energy gaps as functions of L from DMRG. (a) shows thattheenergydifferencebetweenthefirsttwolowest-lyingeigen- Experimental feasibility.—In cold atom laboratories, cur- statesof(1)decaysexponentiallywithL.Theprotectedground-state rently a great deal of effort has been devoted to simulat- manifoldisseparatedfromtherestofthespectrumbyagapthatde- ing strong synthetic magnetic fields in optical lattices by creasesinverselywithL,asshownin(b). HereW=−1.7t(cid:107), t⊥= Raman-assisted tunnelings and lattice-shaking techniques, 0.5t , φ=π, N/L=1/3. (c)–(g):Transitionoutofthetopological (cid:107) which mimic standard Peierls substitutions through attach- phaseatlarget forfixedW =−1.7t , φ=π, L=48, N=16. ⊥ (cid:107) ing an Aharanov–Bohm-like complex phase to the nearest- (c)–(e) demonstrate the edge mode via the nonlocal correlations neighbor single-particle hopping [49–56]. The remarkable [1, 30, 31] in single-particle Green functions. At t =3.0t , the ⊥ (cid:107) edgemodedisappearsindicatingthetransitiontoatrivialstate.This tunabilityoftheseartificialgaugefluxeshaspavedanexper- isinaccordancewith(f)and(g)whichshowthecorrespondingevo- imental avenue to exploring the Bose–Einstein condensation lutions of entanglement spectra and local fermion densities as the in Harper–Hofstadter model of 2D bosonic gases [55]. Chi- transitionisapproached. ral edge states due to particle’s cyclotron motion stirred by uniformfluxeshavealsobeendetectedinquasi-1Dfermionic Numericalverification.—Simulationsbasedondensityma- laddersandHallribbons,whereasizablefluxφcanreachup trixrenormalizationgroup(DMRG)[46]andexactdiagonal- to 1.31π per plaquette by utilizing the technology of optical ization (ED) [47] have been performed to solve the lattice atomicclocks[53,54]. InRef.[1]anatomicschemehasalso 5 beenoutlinedforcreatingthemoreintricatepair-hoppingin- 111,186805(2013). teraction. Thesedevelopmentsmaketheprospectofrealizing [20] B. Braunecker and P. Simon, Phys. Rev. Lett. 111, 147202 flux-stabilizedMajoranazeromodesapossibilityinthenear (2013). [21] D.J.Clarke,J.Alicea,andK.Shtengel,Nat.Commun.4,1348 future. (2013). To summarize, we have shown that by threading π-flux [22] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. through each plaquette, interaction-driven Majorana bound Bakkers,andL.P.Kouwenhoven,Science336,1003(2012). states in fermionic ladders may be stabilized in the presence [23] A.Das,Y.Ronen,Y.Most,Y.Oreg,M.Heiblum,andH.Shtrik- ofsingle-particleinterlegtunneling. Enroutewehaveestab- man,Nat.Phys.8,887(2012). lished a connection between a microscopic Z leg-exchange [24] M.T.Deng,C.L.Yu,G.Y.Huang,M.Larsson,P.Caroff,and 2 H.Q.Xu,NanoLett.12,6414(2012). symmetry present only at this flux value and the action of [25] S.Nadj-Perge,I.K.Drozdov,J.Li,H.Chen,S.Jeon,J.Seo,A. an emergent fermion parity operator in the long-wavelength H.MacDonald,B.A.Bernevig,andA.Yazdani,Science346, bosonizedtheory. Wehavealsohighlightedtheadvantagesof 602(2014). theπ-fluxstateinfosteringumklappprocesseswhichgenerate [26] S.M.Albrecht,A.P.Higginbotham,M.Madsen,F.Kuemmeth, thespingapenablingthistopologicalregime. Ourtheoryhas T. S. Jespersen, J. Nyga˚rd, P. Krogstrup, and C. M. Marcus, beensubstantiatedbyextensiveDMRGandEDcalculations. Nature531,206(2016). [27] L.Fidkowski, R.M.Lutchyn, C.Nayak, andM.P.A.Fisher, C.C.thanksM.D.Schulzfordiscussions.Partofthesimu- Phys.Rev.B84,195436(2011). lationisdevelopedfromALPSpackage[57].C.C.andF.J.B. [28] J.D.Sau,B.I.Halperin,K.Flensberg,andS.DasSarma,Phys. aresupportedbyNSF-DMR1352271andbytheSloanFoun- Rev.B84,144509(2011). dationFG-2015-65927. W.Y.andY.C.aresupportedbythe [29] M.ChengandH.-H.Tu,Phys.Rev.B84,094503(2011). National Natural Science Foundation of China (Grant Nos. [30] N.LangandH.P.Bu¨chler,Phys.Rev.B92,041118(2015). 11625416, 11474064, and 11274069). C. S. T. is supported [31] F.Iemini,L.Mazza,D.Rossini,R.Fazio,andS.Diehl,Phys. Rev.Lett.115,156402(2015). bytheRobertA.WelchFoundationunderGrantNo.E-1146. [32] C.Zhang,S.Tewari,R.M.Lutchyn,andS.DasSarma,Phys. C.C.andW.Y.contributedequallytothiswork. Rev.Lett.101,160401(2008). [33] M.Sato,Y.Takahashi,andS.Fujimoto,Phys.Rev.Lett.103, 020401(2009). [34] C.Chen,Phys.Rev.Lett.111,235302(2013). [35] C.Qu,Z.Zheng,M.Gong,Y.Xu,L.Mao,X.Zou,G.Guo,and ∗ Correspondingauthor. C.Zhang,Nat.Commun.4,2710(2013). [email protected] [36] W.ZhangandW.Yi,Nat.Commun.4,2711(2013). [1] C.V.Kraus,M.Dalmonte,M.A.Baranov,A.M.La¨uchli,and [37] X.-J.LiuandH.Hu,Phys.Rev.A88,023622(2013). P.Zoller,Phys.Rev.Lett.111,173004(2013). [38] I.Bloch,J.Dalibard,andW.Zwerger,Rev.Mod.Phys.80,885 [2] F.Pollmann, A.M.Turner, E.Berg, andM.Oshikawa, Phys. (2008). Rev.B81,064439(2010). [39] N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12, 639 [3] L.FidkowskiandA.Kitaev,Phys.Rev.B83,075103(2011). (2016). [4] X.Chen, Z.-C.Gu, andX.-G.Wen, Phys.Rev.B83, 035107 [40] L.FidkowskiandA.Kitaev,Phys.Rev.B81,134509(2010). (2011). [41] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. [5] A.Y.Kitaev,Phys.-Usp.44,131(2001). Fisher,Phys.Rev.B84,014503(2011). [6] J.Alicea,Y.Oreg,G.Refael,F.vonOppen,andM.P.A.Fisher, [42] Y.-H.Chan,C.-K.Chiu,andK.Sun,Phys.Rev.B92,104514 Nat.Phys.7,412(2011). (2015). [7] J.D.Sau,S.Tewari,andS.DasSarma,Phys.Rev.B82,052322 [43] SeetheSupplementalMaterialfortherelevantdiscussions. (2010). [44] A.KeselmanandE.Berg,Phys.Rev.B91,235309(2015). [8] F.Hassler,A.R.Akhmerov,C.-Y.Hou,andC.W.J.Beenakker, [45] C.ChenandF.J.Burnell,Phys.Rev.Lett.116,106405(2016). NewJ.Phys.12,125002(2010). [46] S.R.White,Phys.Rev.Lett.69,2863(1992). [9] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das [47] A.W.Sandvik,AIPConf.Proc.1297,135(2010). Sarma,Rev.Mod.Phys.80,1083(2008). [48] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 [10] S.DasSarma, M.Freedman, andC.Nayak, npjQuantumIn- (2008). formation1,15001(2015). [49] M. Aidelsburger, M. Atala, S. Nascimbe`ne, S. Trotzky, Y.-A. [11] L.FuandC.L.Kane,Phys.Rev.Lett.100,096407(2008). Chen,andI.Bloch,Phys.Rev.Lett.107,255301(2011). [12] L.FuandC.L.Kane,Phys.Rev.B79,161408(2009). [50] M.Aidelsburger,M.Atala,M.Lohse,J.T.Barreiro,B.Paredes, [13] J.Alicea,Phys.Rev.B81,125318(2009). andI.Bloch,Phys.Rev.Lett.111,185301(2013). [14] J.D.Sau,R.M.Lutchyn,S.Tewari,andS.DasSarma,Phys. [51] H.Miyake,G.A.Siviloglou,C.J.Kennedy,W.C.Burton,and Rev.Lett.104,040502(2010). W.Ketterle,Phys.Rev.Lett.111,185302(2013). [15] R.M.Lutchyn,J.D.Sau,andS.DasSarma,Phys.Rev.Lett. [52] M.Atala,M.Aidelsburger,M.Lohse,J.T.Barreiro,B.Paredes, 105,077001(2010). andI.Bloch,Nat.Phys.10,588(2014). [16] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, [53] L.F.Livi, G.Cappellini, M.Diem, L.Franchi, C.Clivati, M. 177002(2010). Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L. [17] J.Alicea,Rep.Prog.Phys.75,076501(2012). Fallani,Phys.Rev.Lett.117,220401(2016). [18] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 206802 [54] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. (2013). Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L. [19] J.Klinovaja,P.Stano,A.Yazdani,andD.Loss,Phys.Rev.Lett. Fallani,Science349,1510(2015). 6 [55] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle, [57] M.Dolfi,B.Bauer,S.Keller,A.Kosenkov,T.Ewart,A.Kan- Nat.Phys.11,859(2015). tian, T. Giamarchi, and M. Troyer, Comput. Phys. Commun. [56] J.Struck,C.O¨lschla¨ger,M.Weinberg,P.Hauke,J.Simonet,A. 185,3430(2014). Eckardt,M.Lewenstein,K.Sengstock,andP.Windpassinger, Phys.Rev.Lett.108,225304(2012). SupplementalMaterial Bandstructure HereweprovidemoredetailsonthebandstructureofH ,andshowhowitentersthebosonizedformofthefullHamiltonian. K ThenoninteractingkineticHamiltonian, (cid:16) (cid:17) HK =(cid:90)−∞∞ 2dπk (cid:16)ψk†,0 ψk†,1(cid:17)−2t(cid:107)co−st⊥ka+ φ2 −2t(cid:107)co−s(cid:16)t⊥ka− φ2(cid:17)(cid:18)ψψkk,,10 (cid:19) (cid:90) ∞ (cid:16) (cid:17)(cid:18)E (k,φ) 0 (cid:19)(cid:18) ψ (cid:19) = dk ψ† ψ† + k,+ , k,+ k,− 0 E (k,φ) ψ −∞ − k,− canbediagonalizedbyintroducingtheunitarymatrixM(k,φ), √−uk,φ √ 1 (cid:18) (cid:19) M(k,φ)=(cid:0)|χ+(cid:105) |χ−(cid:105)(cid:1)= √1+1u2k,φ √1u+k,uφ2k,φ , M†H(k,φ)M= E+(0k,φ) E (0k,φ) , − 1+u2 1+u2 k,φ k,φ wherethecomponentinthematrixelementsassumes (cid:115) 1 φ (cid:18) φ(cid:19)2 u = 2t sin(ka)sin + t2 + 2t sin(ka)sin . k,φ t (cid:107) 2 ⊥ (cid:107) 2 ⊥ Fromnowon,wefocusonthecaseofφ = π,withthechemicalpotentialinthelowerband. Linearizingthebandstructure aboutthefourFermipointsinthelowerbandgivesrisetofourindependentbutmutuallyinteractingchiral-fermionbranches, whichwelabel(L,I), (R,I), (L,II),and(R,II)(seeFig.1inthemaintext). Thefermionoperatorinrealspaceisrelatedto thesefourchiralfermionsvia: ψx,(cid:96) (cid:39)eikL,Ix(cid:104)(cid:96)|χ−(kL,I)(cid:105)ψ˜L,I(x)+eikR,Ix(cid:104)(cid:96)|χ−(kR,I)(cid:105)ψ˜R,I(x) +eikL,IIx(cid:104)(cid:96)|χ−(kL,II)(cid:105)ψ˜L,II(x)+eikR,IIx(cid:104)(cid:96)|χ−(kR,II)(cid:105)ψ˜R,II(x), wherexisthepositionalongtheladder,and(cid:96)=0,1indexestheleg. Herewehavedefined(cid:104)(cid:96)=0|≡(1 0),(cid:104)(cid:96)=1|≡(0 1), √ 1 (cid:32)cosξ(k) (cid:33) and|χ−(k)(cid:105)≡|χ−(k,φ=π)(cid:105)= √1u+k,uπ2k,π = sinξ(2k) . 1+u2k,π 2 TheHamiltonianinthemaintextisobtainedbysubstitutingtheseexpressionsintothepair-hoppingtermH ,andperforming W astandardbosonizationanalysisoftheresult. Followingthesecalculationsthrough,onefindsthatthematrixelements(cid:104)(cid:96)|χ (cid:105) − entertheresultingLuttingerparameters,aswellasthesine-Gordoncouplingsg , g , g . Therelevantexpressionsinthe um bs mx spinsectoraregiveninthemaintext;inthechargesectortheassociatedLuttingerparametersaredefinedby (cid:114) (cid:112) u−g u = (u−g)·(u−5g), K = , c c u−5g wherethematrixelemententersu andK viag= aW sin2ξ. c c 2(2π)3 Itfollowsthatthemicroscopicparametersinourbosonizedmodelaresensitivetothepreciseinitialbandstructure, aswell astotheinitialvalueofthechemicalpotentialwithinthelowerband. Inparticular,thewrongchoiceofchemicalpotentialcan leadtoK <1,andanRGflowthattendstotakethesystemawayfromthetopologicalregime. s 7 Topologicalquantumphasetransition Though at φ = π our model is robust to the single-particle interchain tunneling up to t ≈ t , Figs. 2(c)–(e) in the main ⊥ (cid:107) text suggest that by t = 3t , the system has undergone a transition to a nontopological regime. In particular, for this value ⊥ (cid:107) we see that the nonlocal correlation in the single-particle Green function, an indicator of the presence of Majorana boundary modes,disappears. Further,thedoubledegeneracyintheentanglementspectrum,anotherindicatorofthetopologicalboundary modes,disappearsbyt = 2.5t . Finally,thespatialprofileofthelocalfermiondensity(showninFig.2(g)inthemaintext) ⊥ (cid:107) showsclearevidenceofafermiondensity-wave-typeorderfort = 3t . Incomparison, thebulkfermiondensityisuniform ⊥ (cid:107) fort ≤t ,wherethenonlocalcorrelationindicatesthepresenceofMajoranaboundarymodes. ⊥ (cid:107) As further evidence of this transition, Fig. 3 shows the low-energy spectrum of the π-flux ladder as a function of t /t at ⊥ (cid:107) fixed pair-hopping strength W. At approximately t = 2.8t a level crossing occurs between two states with opposite Z ⊥ (cid:107) 2 quantumnumbersunderthestaggeredleg-interchangesymmetryL . Forsmallert thetwolowestenergystateshaveopposite s ⊥ Z quantum numbers; whereas for larger t both have the same (+1) Z eigenvalue. As explained in the main text this Z 2 ⊥ 2 2 quantumnumberisassociatedwiththefermionparityinthetopologicalregion, suggestingthatthislevelcrossingindicatesa transitionoutofthetopologicalregime. Thislevelcrossingisconsistentwithwhatweexpectforatransitionfromatopological regimetoafermion-density-waveorder: Inthelattercaseweexpectthelowesttwostatestoberelatedbytranslation,andhence tohavethesameparityundertheleg-exchangesymmetryL . s 0.4 W = 1.7t|| 0 E En 0.3 = a: ctr L12N4ED e p S y 0.2 g r e n e n e g Ei 0.1 0.0 0 1 2 3 4 5 t /t|| FIG.3: ExactdiagonalizationresultsshowtheevolutionoftherescaledeigenenergiesofH: E −E ,asweincreaset . Herewefixed n 0 ⊥ W = −1.7t , φ = π, L = 12, N = 4, andsett = 1.0astheenergyunit. WemonitortheL-quantumnumberforthelowestthree (cid:107) (cid:107) s eigenstatesandusedifferentcolorstodistinguishtheZ eigenvaluesofL: Bluedenotes(cid:104)L(cid:105) = +1,whilereddenotes(cid:104)L(cid:105) = −1. When 2 s s s 0≤t /t (cid:46)2.5,thelowesttwoeigenstatescanbedifferentiatedbytheirquantumnumbersofL. However,whent /t (cid:38)3,theypossess ⊥ (cid:107) s ⊥ (cid:107) thesamequantumnumber(cid:104)L(cid:105)=+1astheconsequenceoflevelcrossingbetweenthe1stand2ndexcitedstates. s Thepi-fluxladderforpositiveW TheRGanalysisinthemaintextsuggeststhatforfinitet whenW >0, φ=π,themostrelevantgappingchannelofH for ⊥ s low fermion density (3π/(4a)>k >π/(2a)) is the backscattering term g . In this section we present the corresponding R,II bs DMRGresultstoillustratethattheresultingphaseexhibitsnosignaturesoftopologicalprotectionatfinitet . ⊥ In particular, we evaluate the entanglement spectra (ES) for W = +1.7t at several different values of t . The results in (cid:107) ⊥ Fig. 4(a) demonstrate the significant splitting of the ES two-fold degeneracy at the lowest level even for the smallest nonzero valuesoft ≈ 0.1t . ThisisinsharpcontrasttothesituationofW = −1.7t , wheretheevendegeneracyinESpersistsup ⊥ (cid:107) (cid:107) 8 8 a ctr6 e p S nt e m4 e gl n a nt E2 (a) 0 0.0 0.2 0.4 t /t|| 0.6 0.8 1.0 0.18 n,0 (t /t||=0.0) n,1 (t /t||=0.0) 0.16 n,0 (t /t||=0.5) n,1 (t /t||=0.5) (b) 0 15 n 30 45 FIG.4: DMRGresults: (a)showsthedegeneracysplittingsintheentanglementspectraasafunctionoft forthegroundstateoftheladder ⊥ systemwiththefixedparameters: W =+1.7t , φ=π, L=48, N =16. Twoprototypicalfermion-densityprofileshavebeenillustrated (cid:107) inpanel(b),whereforthetrivialstatethereexistweakdensitymodulationsalongthechain. tot ≈ 2.0t (seeFig.2(f)inthemaintext). Further,forparameterswherethisdegeneracyislifted,thelocalfermion-density ⊥ (cid:107) profileρ exhibitsweakmodulationsalongthechain,ascanbeseenfromFig.4(b). Herewedefineρ =(cid:104)c† c (cid:105), ρ = n,(cid:96) n,0 n,0 n,0 n,1 (cid:104)c† c (cid:105)fortheupperandlowerchains,respectively. n,1 n,1 Leg-interchange-symmetry-breakingperturbations Here,wedemonstratenumericallythattheZ leg-exchangesymmetryandthefluxφ = π arebothcentraltoprotectingthe 2 topologicalfeaturesofourmodel. Specifically, weinvestigatethreedifferentwaysofbreakingtheleg-interchangesymmetry, andshowthatsmall(butfinite)valuesofallsymmetry-breakingperturbationsliftthedegeneraciesintheESassociatedwiththe topologicalboundarymodes. Inaddition,weperformananalysisoftheeffectofperturbingthefluxawayfromφ = π,which liftsthedegeneraciesintheentanglementspectrumandleadstoafermion-density-waveorder. Makingtheintrachainhoppingsdifferent Wefirstconsidertheresultofexplicitlybreakingtheleg-interchangesymmetrybychoosingt tobedifferentonthetwolegs (cid:107) oftheladder. WethusmodifytheHamiltonianinthefollowingway: L−2 L−1 H(cid:48) =−(cid:88)(cid:104)(cid:16)i(cid:0)t −δ (cid:1)c† c −i(cid:0)t +δ (cid:1)c† c (cid:17)+H.c.(cid:105)−(cid:88)(cid:16)t c† c +H.c.(cid:17) (cid:107) t n,0 n+1,0 (cid:107) t n,1 n+1,1 ⊥ n,0 n,1 n=0 n=0 L−2 (cid:88)(cid:16) (cid:17) + Wc† c† c c +H.c. , (17) n,0 n+1,0 n,1 n+1,1 n=0 wherewehavesetφ=π,andtheaddedδ -termsexplicitlybreaktheL symmetry. t s 9 8 a ectr6 p S nt e m4 e gl n a nt E2 (a) 0 0.00 0.05 0.10 t/t|| 0.15 0.20 0.3 n,0 ( t/t||=0.05) 0.2 n,1 ( t/t||=0.05) n,0 ( t/t||=0.2) 0.1 (b) n,1 ( t/t||=0.2) 0.0 0 7 14 n 21 28 35 FIG.5: DMRGresults: (a)showstheevolutionofES(forasystemofL = 36, N = 12)asafunctionofL-breakingperturbationδ /t s t (cid:107) (seeEq.(17)). TheevendegeneracyofESsurvivesonlyuptosmallvaluesofδ /t ≈ 0.125. Panel(b)illustratesthelocalfermion-density t (cid:107) profilesforthetwodifferentvaluesofδ /t .HereW =−1.7t , t =t , φ=π. t (cid:107) (cid:107) ⊥ (cid:107) TheargumentsgiveninthemaintextassertthatbreakingL shouldliftthedegeneracyassociatedwiththetopologicalbound- s arymodes,sincethereisnolongeranyreasonforthefermionparityevenandfermionparityoddstatestobeproximateinenergy. Thisisapparentintheevolutionoftheground-stateentanglementspectra(showninFig.5(a)forasystemofL=36, N =12) asafunctionofδ /t .WeobservethatforfixedW =−1.7t , t =t ,thetwo-folddegeneracyinthelowestleveloftheEShas t (cid:107) (cid:107) ⊥ (cid:107) completelydisappearedbyδ =0.15t . ThissuggeststhatthesymmetryL is,asclaimed,integraltoprotectingthetopological t (cid:107) s boundarymodes. Fig.5(b)furthersupportsthis, byshowingthatforsufficientlylargeδ (δ = 0.2t ), thefermiondensityon t t (cid:107) thelowerchaintendstodevelopweakspatialmodulations,similartothoseobservedforpositiveW intheprevioussection. For smallervalues (δ = 0.05t ), the density profilesappearto remainuniformin thebulk, though therelativepopulations ofthe t (cid:107) twochainsaregenericallydifferentwhentheleg-interchangesymmetryisbroken. It is somewhat surprising that for the smallest values of δ /t the degeneracy in the ES and the uniform fermion density t (cid:107) persist,suggestingthatthetopologicalboundarymodesareonlydestroyedatfinitevaluesofthesymmetry-breakingparameter. AsimilareffectwasobservedinRef.[1],wheretheauthorssawsignaturesoftopologicalfeaturesintheφ = 0chainforsmall butfiniteinterchainsingle-particlehopping—therelevantsymmetry-breakingperturbationinthatcase. Thismaybebecausethe spinsectorisgappedandcompletelydecoupledfromthegaplesschargesector;henceitsbehaviorisrobusttosufficientlysmall perturbations. 10 8 a ctr pe6 S nt e m e4 gl n a nt E 2 (a) 0 0.0 0.1 h/t|| 0.2 0.3 0.3 n,0 (h/t||=0.1) 0.2 n,1 (h/t||=0.1) n,0 (h/t||=0.3) 0.1 (b) n,1 (h/t||=0.3) 0.0 0 7 14 n 21 28 35 FIG.6: DMRGresults: (a)showstheevolutionofES(forasystemofL = 36, N = 12)asafunctionofL-breakingperturbationh/t s (cid:107) (seeEq.(18)). TheevendegeneracyofESsurvivesuptosmallvaluesofh/t ≈ 0.225. Panel(b)showsthedevelopmentofweakdensity (cid:107) modulationsalongthelowerchainash/t increases.HereW =−1.7t , t =t , φ=π. (cid:107) (cid:107) ⊥ (cid:107) Makingimbalancedlocalpotentials Asasecondtest,weconsideraddingachemicalpotentialthatisimbalancedbetweenthetwochainsoftheFermiladder. We thustaketheHamiltoniantobe L−2 L−1 (cid:88)(cid:104)(cid:16) (cid:17) (cid:105) (cid:88)(cid:16) (cid:17) H(cid:48) =− it c† c −it c† c +H.c. − t c† c +H.c. (cid:107) n,0 n+1,0 (cid:107) n,1 n+1,1 ⊥ n,0 n,1 n=0 n=0 L−2 L−1 (cid:88)(cid:16) (cid:17) (cid:88)(cid:16) (cid:17) + Wc† c† c c +H.c. + hc† c −hc† c , (18) n,0 n+1,0 n,1 n+1,1 n,0 n,0 n,1 n,1 n=0 n=0 wherethelasth-termsalsobreaktheL symmetryexplicitly. s Via DMRG, we find that the effect of h-terms (see Fig. 6) is similar to that of the δ -terms, both of which tend to destroy t the topological Majorana boundary modes as indicated by the splitting (or nondegeneracy) in the lowest level of ES. This perturbation also has a similar effect on the fermion-density profile, first changing the relative occupancies of the two chains, and at higher values leading to density modulations in the higher density chain. The two perturbations differ quantitatively, however: Inthiscase, thetwo-foldESdegeneracysurvivesuptoh/t betweenabout0.2and0.25. Theotherparametersare (cid:107) keptthesameasthatinFig.5: W =−1.7t , t =t , φ=π, L=36, N =12. (cid:107) ⊥ (cid:107)