Fluorine Magnetic Resonance Imaging (cid:49)(cid:66)(cid:79)(cid:1)(cid:52)(cid:85)(cid:66)(cid:79)(cid:71)(cid:80)(cid:83)(cid:69)(cid:1)(cid:52)(cid:70)(cid:83)(cid:74)(cid:70)(cid:84)(cid:1)(cid:80)(cid:79)(cid:1)(cid:51)(cid:70)(cid:79)(cid:70)(cid:88)(cid:66)(cid:67)(cid:77)(cid:70)(cid:1)(cid:38)(cid:79)(cid:70)(cid:83)(cid:72)(cid:90)(cid:1)(cid:137)(cid:1)(cid:55)(cid:80)(cid:77)(cid:86)(cid:78)(cid:70)(cid:1)(cid:19) Fluorine Magnetic Resonance Imaging edited by Ulrich Flögel editors PrebenMaegaard Eric Ahrens AnnaKrenz WolfgangPalz The Rise of Modern Wind Energy Wind Power for the World Published by Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988 Email: [email protected] Web: www.panstanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Fluorine Magnetic Resonance Imaging Copyright © 2017 Pan Stanford Publishing Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Cover image: “Universe of Imaging,” courtesy of Prof. Juerg Schwitter, Division of Cardiology and Cardiac MR Center of the University Hospital Lausanne, CHUV, Switzerland. ISBN 978-981-4745-31-4 (Hardcover) ISBN 978-981-4745-32-1 (eBook) Printed in the USA Contents Preface xv Part 1: Technical Issues 1. Pulse Sequence Considerations and Schemes 3 Cornelius Faber and Florian Schmid 1.1 Introduction 3 1.2 General Considerations 5 1.2.1 The Pulse Sequences 5 1.2.2 More General Pulse Sequence Considerations 9 1.3 Sensitivity of Particular Sequences in Parameter Space 11 1.3.1 SNR Efficiencies and Optimum Parameters for UTE, FLASH and bSSFP 14 1.3.2 SNR Efficiencies and Optimum Parameters for RARE 17 19 1.4 The Best Pulse Sequence for F MRI 20 19 1.5 Implications for Actual F MRI Measurements 22 1.6 Further Methods to Increase SNR: Heteronuclear 2. AdvanOcveedr hDaeutseecrt iEonnh Taencchenmiqeunet s and Hardware: 23 Simultaneous 19F/1H MRI 29 Lingzhi Hu, Jochen Keupp, Shelton D. Caruthers, Matthew J. Goette, Gregory M. Lanza, and Samuel A. Wickline 2.1 Imaging Applications of Perfluorocarbon Nanoparticles and Introduction of Simultaneous 19 1 F/ H MRI 30 2.2 MRI Hardware and Reconstruction for 19 1 Simultaneous F/ H Imaging 33 vi Contents 2.2.1 Scanner Hardware Design 33 2.2.2 MR Reconstruction Methods 34 19 1 2.3 F/ H Dual-Frequency RF Coil Design and System 19 1 Calibration for Simultaneous F/ H Imaging 38 19 1 2.3.1 F/ H Dual-Frequency RF Coil Design 38 2.3.2 MR System and RF Coil Calibration for 19 1 Simultaneous F/ H Imaging 43 19 1 2.4 Advanced MR Sequences for Simultaneous F/ H Imaging 46 2.4.1 Balanced Ultrashort TE Steady State-Free Precession Sequence 47 2.4.2 Fluorine Ultrafast Turbo Spectroscopic Imaging Sequence 49 2.4.3 Blood-Flow Enhanced Saturation Recovery Sequence 50 3. 2H.5yp erCpoonlcalruizsaiotnio n for Signal Enhancement in Fluorine 52 MR Applications 59 Ute Bommerich, Johannes Bernarding, Denise Lego, Thomas Trantzschel, and Markus Plaumann 3.1 Introduction 59 3.2 Hyperpolarization Techniques: History and Physical Principles 60 3.2.1 Dynamic Nuclear Polarization 61 3.2.2 Chemically Induced Dynamic Nuclear Polarization 66 3.2.3 Parahydrogen-Induced Polarization 70 3.2.4 Application of HP Methods to MRI 74 19 3.3 Hyperpolarized F: Chronological Results 77 3.3.1 DNP 77 3.3.2 CIDNP 80 3.3.3 PHIP 83 3.4 Perspectives 86 Contents vii Part 2: 19F Imaging Agents 4. Active Targeting of Perfluorocarbon Nanoemulsions 103 Sebastian Temme, Christoph Grapentin, Tuba Güden-Silber, and Ulrich Flögel 4.1 A Short Introduction to Perfluorocarbons and Perfluorocarbon Nanoemulsions 103 4.2 Generation of Targeted Perfluorocarbon Nanoemulsions 105 4.2.1 Targeting Ligands 106 4.2.1.1 Antibodies and antibody derivatives 106 4.2.1.2 Peptides and other targeting ligands 109 4.2.2 Coupling of Targeting Ligands to PFC-NE 109 4.2.2.1 Functional groups for coupling reactions 109 4.2.2.2 Generation of targeted PFC-NE 112 4.3 Applications Using Actively Targeted PFC-NE 113 4.3.1 Inflammation 114 4.3.1.1 Imaging immune cells 114 4.3.1.2 Visualization of the activated endothelium 116 4.3.1.3 Inflammation-associated angiogenesis 116 4.3.2 Cancer 117 4.3.3 Thrombosis 120 4.3.4 Atherosclerotic Plaques and Restenosis 123 4.3.5 Targeting of Stem Cells 125 5. 4R.e4s poSnusmivme aPrryo baneds fOour t1l9oFo Mk RS/MRI 112461 Aneta Keliris, Klaus Scheffler, and Jörn Engelmann 5.1 Introduction 141 5.2 Response Mechanisms 143 viii Contents 19 5.3 Classes of F Responsive Probes 144 19 5.3.1 pH-Activatable F Probes 144 19 5.3.2 Metal Ion Responsive F Sensors 147 19 5.3.3 Responsive F Probes for Detection of Proteins and Their Function 149 5.3.3.1 Enzyme responsive probes 150 5.3.3.2 Sensing non-enzymatic proteins and nucleic acids 155 19 5.3.4 F Probes Responsive to pO2 158 19 5.4 Sensitivity and Detection Levels for F MRI/MRS 159 5.5 ConcluPsaiornts 3 : Inflammation Imaging 161 6. Imaging Acute Organ Transplant Rejection with 19F MRI 171 T. Kevin Hitchens, Lesley M. Foley, and Qing Ye 6.1 Organ Transplantation 171 6.2 Organ Rejection 173 6.3 In vivo Macrophage Labeling and MRI Cell Tracking 174 6.4 Detection of Acute Kidney Transplant Rejection Using MRI Cell Tracking 176 6.5 Detection of Acute Allograft Rejection in the Heart with MRI Cell Tracking 180 7. 6C.a6r diaCco nDcisluesaisoen s 118951 Ruud B. van Heeswijk, Christine Gonzales, and Juerg Schwitter 7.1 Introduction 191 7.2 Motion Compensation and Pulse Sequences 195 7.2.1 Cardiac Motion 195 7.2.2 Respiratory Motion 196 7.2.3 Bulk Motion 198 7.3 Animal Models of Cardiovascular Diseases 199 7.3.1 Angiography 199 Contents ix 7.3.2 Myocarditis 199 7.3.3 Heart Transplantation 202 7.3.4 Myocardial Infarction 203 7.3.5 Atherosclerosis 207 19 7.4 In vitro F-Labeling of Inflammatory Cells 209 7.5P arCto 4n:c lMusoionnist oanrdin Pge rosfp eScpteivceifsi c Cell Populations 210 8. Tracking Lymphocytes in vivo 221 Ghaith Bakdash and Mangala Srinivas 8.1 Introduction 222 8.2 Lymphocytes 222 8.2.1 Function 222 8.2.2 Migration 223 8.2.3 Autoimmune Disease, Cancer and Transplant Rejection 225 8.3 Lymphocyte Tracking with Other Imaging Modalities 226 8.3.1 Nuclear Imaging Techniques 226 8.3.2 Fluorescence Imaging and Microscopy 227 8.4 MRI for Tracking Lymphocytes 228 8.4.1 Iron-Based Imaging 229 8.4.2 Gadolinium-Based Imaging 231 19 8.5 F MRI for Tracking Lymphocytes 231 8.5.1 Labels and Cell Loading 231 8.5.2 In vivo Imaging Data 233 8.5.3 Ex vivo Studies 236 9. 8T.r6a ckiCnogn ocfl uDseinodnr itic Cells 223473 Sonia Waiczies, MinChi Ku, and Thoralf Niendorf 9.1 Introduction 243 9.2 About Dendritic Cells 244 9.2.1 Dendritic Cell Classification: Challenges Ahead 245