ebook img

Fluid-structure interactions : cross-flow-induced instabilities PDF

414 Pages·2010·5.263 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fluid-structure interactions : cross-flow-induced instabilities

This page intentionally left blank FLUID-STRUCTURE INTERACTIONS Structuresincontactwithfluidflow,whethernaturalorman-made,areinev- itablysubjecttoflow-inducedforcesandflow-inducedvibration:fromplant leavestotrafficsignsandtomoresubstantialstructures,suchasbridgedecks and heat exchanger tubes. Under certain conditions the vibration may be self-excited,anditisusuallyreferredtoasaninstability.Theseinstabilities and,morespecifically,theconditionsunderwhichtheyariseareofgreatim- portancetodesignersandoperatorsofthesystemsconcernedbecauseofthe significant potential to cause damage in the short term. Such flow-induced instabilities are the subject of this book. In particular, the flow-induced in- stabilities treated in this book are associated with cross-flow, that is, flow normal to the long axis of the structure, although the book does not aim tocovereverypossibletype.Insteadittreatsaspecificsetofproblemsthat arefundamentallyandtechnologicallyimportant:galloping,vortex-shedding oscillationsunderlock-inconditions,andrain-and-wind-inducedvibrations, amongothers.Theemphasisthroughoutisonprovidingaphysicaldescription ofthephenomenathatisasclearandup-to-dateaspossible. MichaelP.Pa¨ıdoussisisaMechanicalEngineeringprofessoratMcGillUni- versity.HeisaFellowoftheRoyalSocietyofCanada,theCanadianAcademy ofEngineering,theCanadianSocietyforMechanicalEngineering(CSME), theInstitutionofMechanicalEngineers(IMechE),theAmericanSocietyof MechanicalEngineers(ASME),andtheAmericanAcademyofMechanics (AAM).ProfessorPa¨ıdoussisisthefoundingeditoroftheJournalofFluids andStructures.Hisprincipalresearchinterestsareinfluid-structureinterac- tions,flow-inducedvibrations,aero-andhydroelasticity,dynamics,nonlinear dynamics,andchaos. StuartJ.PriceisaMechanicalEngineeringprofessoratMcGillUniversity.His researchisfocusedonthedynamicsandstabilityofstructuresexposedtoa fluidflow.Thetopicsstudiedareinspiredby,andoftendirectlyrelatedto,real engineering problems – for example, heat exchangers, offshore structures, overheadtransmissionlines,andaircraftstructures. EmmanueldeLangreisaprofessorofMechanicsinE´colePolytechnique.He isanassociateeditoroftheJournalofFluidsandStructures.Hehasworked asanengineerintheFrenchnuclearindustry.Hisprincipalresearchinterests areinfluid-structureinteractionsandvibrationsofengineeringsystems,such asheatexchangersandunderwateroffshorerisers,butalsoofnaturalsystems suchascropsandtreesmovingunderwindload. Fluid-Structure Interactions CROSS-FLOW-INDUCED INSTABILITIES Michael P. Pa¨ıdoussis McGillUniversity Stuart J. Price McGillUniversity Emmanuel de Langre E´colePolytechnique cambridgeuniversitypress Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9780521119429 (cid:1)C MichaelP.Pa¨ıdoussis,StuartJ.Price,andEmmanueldeLangre2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationdata Pa¨ıdoussis,M.P. Fluid-structureinteractions:cross-flow-inducedinstabilities/MichaelPa¨ıdoussis,StuartPrice,Em- manueldeLangre. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-11942-9 1.Fluid-structureinteraction. 2.Unsteadyflow(Fluiddynamics) I.Price,Stuart,1951– II.Langre, Emmanuelde,1958–. III.Title. TA356.5.F58P346 2010 624.1(cid:2)7–dc22 2010031766 ISBN978-0-521-11942-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLsforexternal orthird-partyInternetWebsitesreferredtointhispublicationanddoesnotguaranteethatanycontent onsuchWebsitesis,orwillremain,accurateorappropriate. Contents Preface pageix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 GeneralOverview 1 1.2 ConceptsandMechanisms 3 1.2.1 Self-excitedoscillationsandinstabilities 4 1.2.2 Arganddiagramsandbifurcations 8 1.2.3 Energyconsiderations 12 1.3 Notation 13 1.4 ContentsoftheBook 14 2 PrismsinCross-Flow–Galloping . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 IntroductoryComments 15 2.2 TheMechanismofGalloping 19 2.2.1 Thelinearthresholdofgalloping 20 2.2.2 Nonlinearaspects 24 2.3 FurtherWorkonTranslationalGalloping 30 2.3.1 Theeffectofsectionalshape 30 2.3.2 Novak’s“universalresponsecurve”andcontinuous structures 38 2.3.3 Unsteadyeffectsandanalyticalmodels 43 2.3.4 Somecommentsontheflowfield 45 2.3.5 Shear-layerreattachment 49 2.4 Low-SpeedGalloping 50 2.5 PrismsandCylinderswithaSplitterPlate 55 2.6 WakeBreathingandStreamwiseOscillation 62 2.6.1 Wakebreathingofthefirsttype 62 2.6.2 Wakebreathingofthesecondtype 64 2.7 TorsionalGalloping 66 2.7.1 Generalcomments 66 2.7.2 Linearquasi-steadyanalysis 67 2.7.3 Nonlinearquasi-steadyanalysis 70 v vi Contents 2.7.4 Disqualificationofquasi-steadytheory 72 2.7.5 Unsteadytheory 75 2.8 Multi-Degree-of-FreedomGalloping 77 2.8.1 Quasi-steadymodels 77 2.8.2 Unsteadymodels 81 2.9 TurbulenceandShearEffects 81 2.10ConjointGallopingandVortexShedding 86 2.11ElongatedandBridge-DeckSections 90 2.12ConcludingRemarks 102 3 Vortex-InducedVibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.1 ElementaryCase 105 3.2 Two-DimensionalVIVPhenomenology 108 3.2.1 Bluff-bodywakeinstability 110 3.2.2 Wakeinstabilityofafixedcylinder 112 3.2.3 Wakeofacylinderforcedtomove 115 3.2.4 Cylinderfreetomove 120 3.3 ModellingVortex-InducedVibrations 124 3.3.1 Aclassificationofmodels 124 3.3.2 TypeA:Forcedsystemmodels 127 3.3.3 TypeB:Fluidelasticsystemmodels 129 3.3.4 TypeC:Coupledsystemmodels 132 3.4 AdvancedAspects 139 3.4.1 Theissueofaddedmass 139 3.4.2 Fromsectionaltothree-dimensionalVIV 146 3.4.3 VIVofnoncircularcross-sections 149 3.4.4 Summaryandconcludingremarks 153 4 Wake-InducedInstabilitiesofPairsandSmallGroupsofCylinders. . .155 4.1 TheMechanisms 155 4.1.1 Modifiedquasi-steadytheory 156 4.1.2 Thedamping-controlledmechanism 157 4.1.3 Thewake-fluttermechanism 158 4.2 Wake-InducedFlutterofTransmissionLines 160 4.2.1 Analysisforafixedwindwardconductor 162 4.2.2 Analysisforamovingwindwardconductor 183 4.2.3 Three-dimensionaleffectsandapplicationtoreal transmissionlines 192 4.3 FluidelasticInstabilityofOffshoreRisers 195 4.3.1 Experimentalevidencefortheexistenceoffluidelastic instabilityinriserbundles 196 4.3.2 Analyticalmodels 200 5 FluidelasticInstabilitiesinCylinderArrays . . . . . . . . . . . . . . . . . . 215 5.1 Description,Background,Repercussions 215 5.2 TheMechanisms 220 5.2.1 Thedamping-controlledone-degree-of-freedom mechanism 220 Contents vii 5.2.2 Staticdivergenceinstability 223 5.2.3 Thestiffness-controlledwake-fluttermechanism 224 5.2.4 Dependenceofthewake-fluttermechanismonmechanical damping 227 5.2.5 Wake-flutterstabilityboundariesforcylinderrows 229 5.2.6 Concludingremarks 230 5.3 FluidelasticInstabilityModels 232 5.3.1 Jet-switchmodel 232 5.3.2 Quasi-staticmodels 235 5.3.3 Unsteadymodels 239 5.3.4 Semi-analyticalmodels 249 5.3.5 Quasi-steadymodels 254 5.3.6 Computationalfluid-dynamicmodels 261 5.3.7 Nonlinearmodels 265 5.3.8 Nonuniformflow 270 5.4 ComparisonoftheModels 274 5.4.1 ExperimentalsupportforandagainstConnors’equation 275 5.4.2 Comparisonoftheoreticalmodelswithexperimentaldata 277 5.4.3 Stateoftheart 287 6 OvallingInstabilitiesofShellsinCross-Flow . . . . . . . . . . . . . . . . . 291 6.1 AHistoricalPerspective 291 6.2 TheVortex-SheddingHypothesis 293 6.3 OvallingwithNoPeriodicVortexShedding 296 6.3.1 Pa¨ıdoussisandHelleur’s1979experiments 296 6.3.2 Insearchofanewcause 302 6.4 FurtherEvidenceContradictingVortex-SheddingHypothesis 304 6.4.1 Furtherexperimentswithcantileveredshells 304 6.4.2 Experimentswithclamped-clampedshells 307 6.5 CounterattackbytheVortex-SheddingProponentsandRebuttal 311 6.5.1 The“peakofresonance”argument 311 6.5.2 Havesplitterplatesbeenineffectual? 312 6.5.3 De´nouement 313 6.6 SimpleAeroelastic-FlutterModel 314 6.6.1 Equationsofmotionandboundaryconditions 315 6.6.2 Solutionoftheequations 317 6.6.3 Theoreticalresultsandcomparisonwithexperiment 319 6.7 AThree-DimensionalFlutterModel 322 6.7.1 Themodelandmethodsofsolution 323 6.7.2 Theoreticalresults 327 6.7.3 Comparisonwithexperiment 329 6.7.4 Improvementstothetheory 331 6.8 AnEnergy-TransferAnalysis 334 6.9 AnotherVariantoftheAeroelastic-FlutterModel 338 6.9.1 Thefluttermodel 338 6.9.2 Typicalresults 340 6.9.3 AnempiricalrelationshipforU 342 thr 6.10ConcludingRemarks 344 viii Contents 7 Rain-and-Wind-InducedVibrations . . . . . . . . . . . . . . . . . . . . . . . 345 7.1 ExperimentalEvidence 345 7.1.1 Fieldcases 345 7.1.2 Wind-tunnelexperiments 346 7.2 ModellingRainwaterRivulets 348 7.2.1 Developmentofrivulets 348 7.2.2 Tearingofrivulets 349 7.3 VIV,GallopingandDragCrisis 351 7.4 Yamaguchi’sModel:ACylinder-Rivulet-CoupledInstability 354 7.5 ConcludingRemarks 355 Epilogue 357 AppendixA TheMultipleScalesMethod 359 AppendixB MeasurementofModalDampingfortheShellsUsed inOvallingExperiments 361 References 365 Index 397

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.